IDEAS home Printed from https://ideas.repec.org/a/spr/decfin/v33y2010i2p117-138.html
   My bibliography  Save this article

Sensitivities for Bermudan options by regression methods

Author

Listed:
  • Denis Belomestny

    ()

  • G. Milstein

    ()

  • John Schoenmakers

    ()

Abstract

In this article we propose several pathwise and finite difference based methods for calculating sensitivities of Bermudan options using regression methods and Monte Carlo simulation. These methods rely on conditional probabilistic representations which allow, in combination with a regression approach, for efficient simultaneous computation of sensitivities at many initial positions. Assuming that the price of a Bermudan option can be evaluated sufficiently accurate, we develop a method for constructing deltas based on least squares. We finally propose a testing procedure for assessing the performance of the developed methods.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Denis Belomestny & G. Milstein & John Schoenmakers, 2010. "Sensitivities for Bermudan options by regression methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 33(2), pages 117-138, November.
  • Handle: RePEc:spr:decfin:v:33:y:2010:i:2:p:117-138
    DOI: 10.1007/s10203-009-0101-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10203-009-0101-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    3. Anastasia Kolodko & John Schoenmakers, 2006. "Iterative construction of the optimal Bermudan stopping time," Finance and Stochastics, Springer, vol. 10(1), pages 27-49, January.
    4. Denis Belomestny & Grigori Milstein, 2006. "Adaptive Simulation Algorithms for Pricing American and Bermudian Options by Local Analysis of Financial Market," SFB 649 Discussion Papers SFB649DP2006-038, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Denis Belomestny, 2009. "Pricing Bermudan options using nonparametric regression: optimal rates of convergence for lower estimates," Papers 0907.5599, arXiv.org.
    6. Joerg Kampen & Anastasia Kolodko & John Schoenmakers, 2008. "Monte Carlo Greeks for financial products via approximative transition densities," Papers 0807.1213, arXiv.org.
    7. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286.
    8. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    9. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Werner Hürlimann, 2012. "Valuation of fixed and variable rate mortgages: binomial tree versus analytical approximations," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 35(2), pages 171-202, November.
    2. Volodymyr Perederiy, 2007. "Kombinierte Liquiditäts- und Solvenzkennzahlen und ein darauf basierendes Insolvenzprognosemodell für deutsche GmbHs," SFB 649 Discussion Papers SFB649DP2007-060, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. repec:eee:apmaco:v:269:y:2015:i:c:p:412-431 is not listed on IDEAS

    More about this item

    Keywords

    American and Bermudan options; Optimal stopping times; Monte Carlo simulation; Deltas; Conditional probabilistic representations; Regression methods; C15; C61;

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:decfin:v:33:y:2010:i:2:p:117-138. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.