IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0907.5599.html
   My bibliography  Save this paper

Pricing Bermudan options using nonparametric regression: optimal rates of convergence for lower estimates

Author

Listed:
  • Denis Belomestny

Abstract

The problem of pricing Bermudan options using Monte Carlo and a nonparametric regression is considered. We derive optimal non-asymptotic bounds for a lower biased estimate based on the suboptimal stopping rule constructed using some estimates of continuation values. These estimates may be of different nature, they may be local or global, with the only requirement being that the deviations of these estimates from the true continuation values can be uniformly bounded in probability. As an illustration, we discuss a class of local polynomial estimates which, under some regularity conditions, yield continuation values estimates possessing this property.

Suggested Citation

  • Denis Belomestny, 2009. "Pricing Bermudan options using nonparametric regression: optimal rates of convergence for lower estimates," Papers 0907.5599, arXiv.org.
  • Handle: RePEc:arx:papers:0907.5599
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0907.5599
    File Function: Latest version
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Denis Belomestny & Fabian Dickmann & Tigran Nagapetyan, 2013. "Pricing American options via multi-level approximation methods," Papers 1303.1334, arXiv.org, revised Dec 2013.
    2. Denis Belomestny & G. Milstein & John Schoenmakers, 2010. "Sensitivities for Bermudan options by regression methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 33(2), pages 117-138, November.
    3. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0907.5599. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.