IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v8y2008i8p845-861.html
   My bibliography  Save this article

Improved lower and upper bound algorithms for pricing American options by simulation

Author

Listed:
  • Mark Broadie
  • Menghui Cao

Abstract

This paper introduces new variance reduction techniques and computational improvements to Monte Carlo methods for pricing American-style options. For simulation algorithms that compute lower bounds of American option values, we apply martingale control variates and introduce the local policy enhancement, which adopts a local simulation to improve the exercise policy. For duality-based upper bound methods, specifically the primal-dual simulation algorithm, we have developed two improvements. One is sub-optimality checking, which saves unnecessary computation when it is sub-optimal to exercise the option along the sample path; the second is boundary distance grouping, which reduces computational time by skipping computation on selected sample paths based on the distance to the exercise boundary. Numerical results are given for single asset Bermudan options, moving window Asian options and Bermudan max options. In some examples the computational time is reduced by a factor of several hundred, while the confidence interval of the true option value is considerably tighter than before the improvements.

Suggested Citation

  • Mark Broadie & Menghui Cao, 2008. "Improved lower and upper bound algorithms for pricing American options by simulation," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 845-861.
  • Handle: RePEc:taf:quantf:v:8:y:2008:i:8:p:845-861
    DOI: 10.1080/14697680701763086
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680701763086
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680701763086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carriere, Jacques F., 1996. "Valuation of the early-exercise price for options using simulations and nonparametric regression," Insurance: Mathematics and Economics, Elsevier, vol. 19(1), pages 19-30, December.
    2. Mark S. Joshi, 2007. "A Simple Derivation of and Improvements to Jamshidian's and Rogers' Upper Bound Methods for Bermudan Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(3), pages 197-205.
    3. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    4. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    5. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    6. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    7. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    8. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    9. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Belomestny & Grigori Milstein & Vladimir Spokoiny, 2009. "Regression methods in pricing American and Bermudan options using consumption processes," Quantitative Finance, Taylor & Francis Journals, vol. 9(3), pages 315-327.
    2. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    3. repec:hum:wpaper:sfb649dp2006-051 is not listed on IDEAS
    4. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2008. "Simulation-based pricing of convertible bonds," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 310-331, March.
    5. Denis Belomestny & G. Milstein & John Schoenmakers, 2010. "Sensitivities for Bermudan options by regression methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 33(2), pages 117-138, November.
    6. Sebastian Becker & Patrick Cheridito & Arnulf Jentzen & Timo Welti, 2019. "Solving high-dimensional optimal stopping problems using deep learning," Papers 1908.01602, arXiv.org, revised Aug 2021.
    7. Ravi Kashyap, 2022. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Annals of Operations Research, Springer, vol. 315(2), pages 1175-1215, August.
    8. Bradley Sturt, 2021. "A nonparametric algorithm for optimal stopping based on robust optimization," Papers 2103.03300, arXiv.org, revised Mar 2023.
    9. Mark S. Joshi, 2016. "Analysing the bias in the primal-dual upper bound method for early exercisable derivatives: bounds, estimation and removal," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 519-533, April.
    10. Jin, Xing & Yang, Cheng-Yu, 2016. "Efficient estimation of lower and upper bounds for pricing higher-dimensional American arithmetic average options by approximating their payoff functions," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 65-77.
    11. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    12. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    13. Louis Bhim & Reiichiro Kawai, 2018. "Smooth Upper Bounds For The Price Function Of American Style Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-38, February.
    14. Jérôme Lelong, 2019. "Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach," Working Papers hal-01983115, HAL.
    15. Burcu Aydoğan & Ümit Aksoy & Ömür Uğur, 2018. "On the methods of pricing American options: case study," Annals of Operations Research, Springer, vol. 260(1), pages 79-94, January.
    16. Maximilian Mair & Jan Maruhn, 2013. "On the primal-dual algorithm for callable Bermudan options," Review of Derivatives Research, Springer, vol. 16(1), pages 79-110, April.
    17. Christopher Beveridge & Mark Joshi, 2011. "Monte Carlo Bounds for Game Options Including Convertible Bonds," Management Science, INFORMS, vol. 57(5), pages 960-974, May.
    18. Ivan Guo & Gregoire Loeper, 2018. "Pricing Bounds for Volatility Derivatives via Duality and Least Squares Monte Carlo," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 598-617, November.
    19. Christian Bayer & Denis Belomestny & Paul Hager & Paolo Pigato & John Schoenmakers, 2020. "Randomized optimal stopping algorithms and their convergence analysis," Papers 2002.00816, arXiv.org.
    20. R. Mark Reesor & T. James Marshall, 2020. "Forest of Stochastic Trees: A Method for Valuing Multiple Exercise Options," JRFM, MDPI, vol. 13(5), pages 1-31, May.
    21. Vikranth Lokeshwar & Vikram Bhardawaj & Shashi Jain, 2019. "Neural network for pricing and universal static hedging of contingent claims," Papers 1911.11362, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:8:y:2008:i:8:p:845-861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.