IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v81y2022i3d10.1007_s10589-021-00347-7.html
   My bibliography  Save this article

A successive relaxation algorithm to solve a MILP involving piecewise linear functions with application to road design

Author

Listed:
  • Dominique Monnet

    (Polytechnique Montréal)

  • Warren Hare

    (University of British Columbia Okanagan)

  • Yves Lucet

    (University of British Columbia Okanagan)

Abstract

This paper presents a new algorithm to build feasible solutions to a MILP formulation of the vertical alignment problem in road design. This MILP involves a large number of special ordered set of type 2 variables used to describe piecewise linear functions. The principle of the algorithm is to successively solve LPs adapted from the MILP by replacing the special ordered set of type 2 constraints by linear constraints. Proof that the solutions to the successive linear relaxations of the MILP converge to a feasible solution to the MILP is provided. Numerical results emphasize that the algorithm performs better than CPLEX for large scale vertical alignment problems.

Suggested Citation

  • Dominique Monnet & Warren Hare & Yves Lucet, 2022. "A successive relaxation algorithm to solve a MILP involving piecewise linear functions with application to road design," Computational Optimization and Applications, Springer, vol. 81(3), pages 741-767, April.
  • Handle: RePEc:spr:coopap:v:81:y:2022:i:3:d:10.1007_s10589-021-00347-7
    DOI: 10.1007/s10589-021-00347-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-021-00347-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-021-00347-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hare, Warren L. & Koch, Valentin R. & Lucet, Yves, 2011. "Models and algorithms to improve earthwork operations in road design using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 215(2), pages 470-480, December.
    2. Hare, Warren & Lucet, Yves & Rahman, Faisal, 2015. "A mixed-integer linear programming model to optimize the vertical alignment considering blocks and side-slopes in road construction," European Journal of Operational Research, Elsevier, vol. 241(3), pages 631-641.
    3. Moreb, Ahmad A., 1996. "Linear programming model for finding optimal roadway grades that minimize earthwork cost," European Journal of Operational Research, Elsevier, vol. 93(1), pages 148-154, August.
    4. Dominique Monnet & Warren Hare & Yves Lucet, 2020. "Fast feasibility check of the multi-material vertical alignment problem in road design," Computational Optimization and Applications, Springer, vol. 75(2), pages 515-536, March.
    5. Ahmet B. Keha & Ismael R. de Farias & George L. Nemhauser, 2006. "A Branch-and-Cut Algorithm Without Binary Variables for Nonconvex Piecewise Linear Optimization," Operations Research, INFORMS, vol. 54(5), pages 847-858, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Monnet & Warren Hare & Yves Lucet, 2020. "Fast feasibility check of the multi-material vertical alignment problem in road design," Computational Optimization and Applications, Springer, vol. 75(2), pages 515-536, March.
    2. Hare, Warren & Lucet, Yves & Rahman, Faisal, 2015. "A mixed-integer linear programming model to optimize the vertical alignment considering blocks and side-slopes in road construction," European Journal of Operational Research, Elsevier, vol. 241(3), pages 631-641.
    3. Mohammad Mahanpoor & Saeed Monajjem & Vahid Balali, 2019. "Sustainable Highway Maintenance: Optimization of Existing Highway Vertical Alignment Considering Pavement Condition," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    4. Hüseyin Güden & Haldun Süral, 2017. "A polynomial algorithm for the earthwork allocation problem with borrow and waste site selection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1085-1093, September.
    5. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    6. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    7. J Gu & M Goetschalckx & L F McGinnis, 2010. "Solving the forward-reserve allocation problem in warehouse order picking systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1013-1021, June.
    8. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R, 2017. "On modelling non-linear quantity discounts in a supplier selection problem by mixed linear integer optimization," Annals of Operations Research, Springer, vol. 258(2), pages 301-346, November.
    9. Mukund Pratap Singh & Pitam Singh & Priyamvada Singh, 2019. "Fuzzy AHP-based multi-criteria decision-making analysis for route alignment planning using geographic information system (GIS)," Journal of Geographical Systems, Springer, vol. 21(3), pages 395-432, September.
    10. Joey Huchette & Joey Huchette, 2019. "A Combinatorial Approach for Small and Strong Formulations of Disjunctive Constraints," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 793-820, August.
    11. Pushak, Yasha & Hare, Warren & Lucet, Yves, 2016. "Multiple-path selection for new highway alignments using discrete algorithms," European Journal of Operational Research, Elsevier, vol. 248(2), pages 415-427.
    12. Bjarne Grimstad & Brage R. Knudsen, 2020. "Mathematical programming formulations for piecewise polynomial functions," Journal of Global Optimization, Springer, vol. 77(3), pages 455-486, July.
    13. Hong, Zhaofu & Chu, Chengbin & Yu, Yugang, 2016. "Dual-mode production planning for manufacturing with emission constraints," European Journal of Operational Research, Elsevier, vol. 251(1), pages 96-106.
    14. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    15. Burdett, R.L. & Kozan, E., 2014. "An integrated approach for earthwork allocation, sequencing and routing," European Journal of Operational Research, Elsevier, vol. 238(3), pages 741-759.
    16. Xiaolin Huang & Jun Xu & Shuning Wang, 2012. "Exact Penalty and Optimality Condition for Nonseparable Continuous Piecewise Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 145-164, October.
    17. Steffen Rebennack, 2016. "Computing tight bounds via piecewise linear functions through the example of circle cutting problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 3-57, August.
    18. Hare, Warren L. & Koch, Valentin R. & Lucet, Yves, 2011. "Models and algorithms to improve earthwork operations in road design using mixed integer linear programming," European Journal of Operational Research, Elsevier, vol. 215(2), pages 470-480, December.
    19. Yu, Shiwei & Zheng, Shuhong & Gao, Shiwei & Yang, Juan, 2017. "A multi-objective decision model for investment in energy savings and emission reductions in coal mining," European Journal of Operational Research, Elsevier, vol. 260(1), pages 335-347.
    20. Mauro Dell’Amico & Guenther Fuellerer & Gerhard Höfinger & Manuel Iori & Stefano Novellani, 2016. "A Decision Support System for Highway Construction: The Autostrada Pedemontana Lombarda," Interfaces, INFORMS, vol. 46(3), pages 245-263, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:81:y:2022:i:3:d:10.1007_s10589-021-00347-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.