IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i3p845-867.html
   My bibliography  Save this article

On solving biquadratic optimization via semidefinite relaxation

Author

Listed:
  • Yuning Yang
  • Qingzhi Yang

Abstract

In this paper, we study a class of biquadratic optimization problems. We first relax the original problem to its semidefinite programming (SDP) problem and discuss the approximation ratio between them. Under some conditions, we show that the relaxed problem is tight. Then we consider how to approximately solve the problems in polynomial time. Under several different constraints, we present variational approaches for solving them and give provable estimation for the approximation solutions. Some numerical results are reported at the end of this paper. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Yuning Yang & Qingzhi Yang, 2012. "On solving biquadratic optimization via semidefinite relaxation," Computational Optimization and Applications, Springer, vol. 53(3), pages 845-867, December.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:845-867
    DOI: 10.1007/s10589-012-9462-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9462-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9462-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii, 1997. "Semidefinite relaxation and nonconvex quadratic optimization," LIDAM Discussion Papers CORE 1997044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Hou & Anthony Man-Cho So, 2014. "Hardness and Approximation Results for L p -Ball Constrained Homogeneous Polynomial Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1084-1108, November.
    2. Shigui Li & Linzhang Lu & Xing Qiu & Zhen Chen & Delu Zeng, 2024. "Tighter bound estimation for efficient biquadratic optimization over unit spheres," Journal of Global Optimization, Springer, vol. 90(2), pages 323-353, October.
    3. Haibin Chen & Hongjin He & Yiju Wang & Guanglu Zhou, 2022. "An efficient alternating minimization method for fourth degree polynomial optimization," Journal of Global Optimization, Springer, vol. 82(1), pages 83-103, January.
    4. Pengfei Huang & Qingzhi Yang & Yuning Yang, 2022. "Finding the global optimum of a class of quartic minimization problem," Computational Optimization and Applications, Springer, vol. 81(3), pages 923-954, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei-Hong Zhang & Li-Zhi Liao, 2012. "An alternating variable method for the maximal correlation problem," Journal of Global Optimization, Springer, vol. 54(1), pages 199-218, September.
    2. Nikhil Bhat & Vivek F. Farias & Ciamac C. Moallemi & Deeksha Sinha, 2020. "Near-Optimal A-B Testing," Management Science, INFORMS, vol. 66(10), pages 4477-4495, October.
    3. NESTEROV, Yurii, 1998. "Global quadratic optimization via conic relaxation," LIDAM Discussion Papers CORE 1998060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. F. Rendl, 2016. "Semidefinite relaxations for partitioning, assignment and ordering problems," Annals of Operations Research, Springer, vol. 240(1), pages 119-140, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:3:p:845-867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.