IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1689-d596820.html
   My bibliography  Save this article

On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates

Author

Listed:
  • Odysseas Kosmas

    (Department of MACE, University of Manchester, Oxford Road, Manchester M13 9PL, UK)

  • Pieter Boom

    (Department of MACE, University of Manchester, Oxford Road, Manchester M13 9PL, UK)

  • Andrey P. Jivkov

    (Department of MACE, University of Manchester, Oxford Road, Manchester M13 9PL, UK)

Abstract

The deformation of a solid due to changing boundary conditions is described by a deformation gradient in Euclidean space. If the deformation process is reversible (conservative), the work done by the changing boundary conditions is stored as potential (elastic) energy, a function of the deformation gradient invariants. Based on this, in the present work we built a “discrete energy model” that uses maps between nodal positions of a discrete mesh linked with the invariants of the deformation gradient via standard barycentric coordinates. A special derivation is provided for domains tessellated by tetrahedrons, where the energy functionals are constrained by prescribed boundary conditions via Lagrange multipliers. The analysis of these domains is performed via energy minimisation, where the constraints are eliminated via pre-multiplication of the discrete equations by a discrete null-space matrix of the constraint gradients. Numerical examples are provided to verify the accuracy of the proposed technique. The standard barycentric coordinate system in this work is restricted to three-dimensional (3-D) convex polytopes. We show that for an explicit energy expression, applicable also to non-convex polytopes, the general barycentric coordinates constitute fundamental tools. We define, in addition, the discrete energy via a gradient for general polytopes, which is a natural extension of the definition for discrete domains tessellated by tetrahedra. We, finally, prove that the resulting expressions can consistently describe the deformation of solids.

Suggested Citation

  • Odysseas Kosmas & Pieter Boom & Andrey P. Jivkov, 2021. "On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates," Mathematics, MDPI, vol. 9(14), pages 1-16, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1689-:d:596820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1689/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1689/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(4), pages 691-705, August.
    2. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(1), pages 225-228, February.
    3. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(5), pages 879-883, October.
    4. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(2), pages 411-413, April.
    5. Odysseas Kosmas & Dimitrios Papadopoulos & Dimitrios Vlachos, 2020. "Geometric Derivation and Analysis of Multi-Symplectic Numerical Schemes for Differential Equations," Springer Optimization and Its Applications, in: Nicholas J. Daras & Themistocles M. Rassias (ed.), Computational Mathematics and Variational Analysis, pages 207-226, Springer.
    6. ,, 2003. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1195-1198, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yakut, Oguz, 2021. "Implementation of hydraulically driven barrel shooting control by utilizing artificial neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1206-1223.
    2. X. Qin & G. Huang, 2009. "An Inexact Chance-constrained Quadratic Programming Model for Stream Water Quality Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 661-695, March.
    3. Md. Yousuf Gazi & Khandakar Tahmida Tafhim, 2019. "Investigation of Heavy-mineral Deposits Using Multispectral Satellite Imagery in the Eastern Coastal Margin of Bangladesh," Earth Sciences Malaysia (ESMY), Zibeline International Publishing, vol. 3(2), pages 16-22, October.
    4. Billionnet, Alain, 2011. "Solving the probabilistic reserve selection problem," Ecological Modelling, Elsevier, vol. 222(3), pages 546-554.
    5. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    6. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    7. Kenneth Kletzer & Mr. Barry J. Eichengreen & Mr. Ashoka Mody, 2003. "Crisis Resolution: Next Steps," IMF Working Papers 2003/196, International Monetary Fund.
    8. Tansel, Aysit & Karao?lan, Deniz, 2016. "The Causal Effect of Education on Health Behaviors: Evidence from Turkey," IZA Discussion Papers 10020, Institute of Labor Economics (IZA).
    9. Di Feng & Bettina Klaus, 2022. "Preference revelation games and strict cores of multiple‐type housing market problems," International Journal of Economic Theory, The International Society for Economic Theory, vol. 18(1), pages 61-76, March.
    10. Anna Scherbina, 2021. "Assessing the Optimality of a COVID Lockdown in the United States," Economics of Disasters and Climate Change, Springer, vol. 5(2), pages 177-201, July.
    11. John McKay, 2005. "How Significant and Effective are North Korea's "Market Reforms"?," Global Economic Review, Taylor & Francis Journals, vol. 34(1), pages 83-97.
    12. Timothy K.M. Beatty & Erling Røed Larsen & Dag Einar Sommervoll, 2005. "Measuring the Price of Housing Consumption for Owners in the CPI," Discussion Papers 427, Statistics Norway, Research Department.
    13. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    14. Sonmez, Tayfun & Utku Unver, M., 2005. "House allocation with existing tenants: an equivalence," Games and Economic Behavior, Elsevier, vol. 52(1), pages 153-185, July.
    15. Juarez, Ruben, 2013. "Group strategyproof cost sharing: The role of indifferences," Games and Economic Behavior, Elsevier, vol. 82(C), pages 218-239.
    16. Velloso, Helvia & Vézina, François & Bustillo, Inés, 2006. "The Canadian retirement income system," Documentos de Proyectos 3682, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    17. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    18. Roth, Alvin E. & Sonmez, Tayfun & Utku Unver, M., 2005. "Pairwise kidney exchange," Journal of Economic Theory, Elsevier, vol. 125(2), pages 151-188, December.
    19. Martino Bardi & Peter Caines & Italo Capuzzo Dolcetta, 2013. "Preface: DGAA Special Issue on Mean Field Games," Dynamic Games and Applications, Springer, vol. 3(4), pages 443-445, December.
    20. repec:dau:papers:123456789/5389 is not listed on IDEAS
    21. Robert Hahn & Paul Tetlock, 2006. "A New Approach for Regulating Information Markets," Journal of Regulatory Economics, Springer, vol. 29(3), pages 265-281, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1689-:d:596820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.