IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i4d10.1007_s00180-024-01564-4.html
   My bibliography  Save this article

Scoring probability maps in the basketball court with Indicator Kriging estimation

Author

Listed:
  • Mirko Luigi Carlesso

    (University of Brescia)

  • Andrea Cappozzo

    (University of Milan)

  • Marica Manisera

    (University of Brescia)

  • Paola Zuccolotto

    (University of Brescia)

Abstract

Measuring players’ and teams’ shooting performance in the basketball court can give important information aimed to the definition of both game strategies and personalized training programs. From a methodological point of view, the estimation of the scoring probability can be faced by resorting to different tools in the field of statistical or algorithmic modelling. As a matter of fact, the most natural theoretical framework for this problem is that of spatial statistics, with the particularity that the analysis is based on the binary measurement variable informing about whether a shot is made or missed. In this paper we propose the use of spatial statistics tools suited to this specific context, namely lorelograms to investigate the spatial correlation and Indicator Kriging to draw scoring probability maps. A structured case study is presented, dealing with all the teams of the Italian Basketball First League, based on a non-public dataset containing substantive additional information, that allows interesting insights about assisted and uncontested shots.

Suggested Citation

  • Mirko Luigi Carlesso & Andrea Cappozzo & Marica Manisera & Paola Zuccolotto, 2025. "Scoring probability maps in the basketball court with Indicator Kriging estimation," Computational Statistics, Springer, vol. 40(4), pages 1731-1751, April.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:4:d:10.1007_s00180-024-01564-4
    DOI: 10.1007/s00180-024-01564-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01564-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01564-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kubatko Justin & Oliver Dean & Pelton Kevin & Rosenbaum Dan T, 2007. "A Starting Point for Analyzing Basketball Statistics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 3(3), pages 1-24, July.
    2. Ruiz Francisco J. R. & Perez-Cruz Fernando, 2015. "A generative model for predicting outcomes in college basketball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(1), pages 39-52, March.
    3. Metulini Rodolfo & Manisera Marica & Zuccolotto Paola, 2018. "Modelling the dynamic pattern of surface area in basketball and its effects on team performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(3), pages 117-130, September.
    4. L. Lamas & D. De Rose Junior & F. Santana & E. Rostaiser & L. Negretti & C. Ugrinowitsch, 2011. "Space creation dynamics in basketball offence: validation and evaluation of elite teams," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 11(1), pages 71-84, April.
    5. Marco Sandri & Paola Zuccolotto & Marica Manisera, 2020. "Markov switching modelling of shooting performance variability and teammate interactions in basketball," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1337-1356, November.
    6. Steven Wu & Luke Bornn, 2018. "Modeling Offensive Player Movement in Professional Basketball," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 72-79, January.
    7. Victor De Oliveira, 2020. "Models for Geostatistical Binary Data: Properties and Connections," The American Statistician, Taylor & Francis Journals, vol. 74(1), pages 72-79, January.
    8. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2023. "Spatial performance analysis in basketball with CART, random forest and extremely randomized trees," Annals of Operations Research, Springer, vol. 325(1), pages 495-519, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2023. "Spatial performance analysis in basketball with CART, random forest and extremely randomized trees," Annals of Operations Research, Springer, vol. 325(1), pages 495-519, June.
    2. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2021. "Spatial Performance Indicators and Graphs in Basketball," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 725-738, August.
    3. Alessandro Chessa & Pierpaolo D’Urso & Livia Giovanni & Vincenzina Vitale & Alfonso Gebbia, 2023. "Complex networks for community detection of basketball players," Annals of Operations Research, Springer, vol. 325(1), pages 363-389, June.
    4. Manlio Migliorati & Marica Manisera & Paola Zuccolotto, 2023. "Integration of model-based recursive partitioning with bias reduction estimation: a case study assessing the impact of Oliver’s four factors on the probability of winning a basketball game," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 271-293, March.
    5. Pierpalo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A Bayesian network to analyse basketball players’ performances: a multivariate copula-based approach," Annals of Operations Research, Springer, vol. 325(1), pages 419-440, June.
    6. Rodolfo Metulini & Giorgio Gnecco, 2023. "Measuring players’ importance in basketball using the generalized Shapley value," Annals of Operations Research, Springer, vol. 325(1), pages 441-465, June.
    7. Luca Scrucca & Dimitris Karlis, 2025. "A model-based approach to shot charts estimation in basketball," Computational Statistics, Springer, vol. 40(4), pages 2031-2048, April.
    8. Nikolaos Stavropoulos & Alexandra Papadopoulou & Pavlos Kolias, 2021. "Evaluating the Efficiency of Off-Ball Screens in Elite Basketball Teams via Second-Order Markov Modelling," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    9. Kęstutis Matulaitis & Tomas Bietkis, 2021. "Prediction of Offensive Possession Ends in Elite Basketball Teams," IJERPH, MDPI, vol. 18(3), pages 1-11, January.
    10. Kristijan Breznik & Vincenzo Candila & Antonina Milekhina & Marialuisa Restaino, 2025. "Eras of dominance: identifying strong and weak periods in professional tennis," Computational Statistics, Springer, vol. 40(4), pages 2049-2066, April.
    11. Joseph Price & Justin Wolfers, 2010. "Racial Discrimination Among NBA Referees," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(4), pages 1859-1887.
    12. Ludden Ian G. & Khatibi Arash & King Douglas M. & Jacobson Sheldon H., 2020. "Models for generating NCAA men’s basketball tournament bracket pools," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(1), pages 1-15, March.
    13. Letian Zhang, 2019. "Who Loses When a Team Wins? Better Performance Increases Racial Bias," Organization Science, INFORMS, vol. 30(1), pages 40-50, February.
    14. Jorge Serna & Verónica Muñoz-Arroyave & Jaume March-Llanes & M. Teresa Anguera & Queralt Prat & Aaron Rillo-Albert & David Falcón & Pere Lavega-Burgués, 2021. "Effect of Ball Screen and One-on-One on the Level of Opposition and Effectiveness of Shots in the ACB," IJERPH, MDPI, vol. 18(5), pages 1-16, March.
    15. Leonardo Lamas & Felipe Santana & Matthew Heiner & Carlos Ugrinowitsch & Gilbert Fellingham, 2015. "Modeling the Offensive-Defensive Interaction and Resulting Outcomes in Basketball," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-14, December.
    16. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    17. Timo Adam & Marius Ötting & Rouven Michels, 2024. "Markov-switching decision trees," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(2), pages 461-476, June.
    18. Manner Hans, 2016. "Modeling and forecasting the outcomes of NBA basketball games," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(1), pages 31-41, March.
    19. Štrumbelj, Erik & Vračar, Petar, 2012. "Simulating a basketball match with a homogeneous Markov model and forecasting the outcome," International Journal of Forecasting, Elsevier, vol. 28(2), pages 532-542.
    20. Miguel Ángel Pérez-Toledano & Francisco J Rodriguez & Javier García-Rubio & Sergio José Ibañez, 2019. "Players’ selection for basketball teams, through Performance Index Rating, using multiobjective evolutionary algorithms," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:4:d:10.1007_s00180-024-01564-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.