Penalized function-on-function linear quantile regression
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-024-01494-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Crainiceanu, Ciprian M. & Staicu, Ana-Maria & Di, Chong-Zhi, 2009. "Generalized Multilevel Functional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1550-1561.
- Hojin Yang & Veerabhadran Baladandayuthapani & Arvind U.K. Rao & Jeffrey S. Morris, 2020. "Quantile Function on Scalar Regression Analysis for Distributional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 90-106, January.
- Zhou, Zhiyang, 2021. "Fast implementation of partial least squares for function-on-function regression," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
- Yao, Fang & Sue-Chee, Shivon & Wang, Fan, 2017. "Regularized partially functional quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 39-56.
- Kehui Chen & Hans‐Georg Müller, 2012. "Conditional quantile analysis when covariates are functions, with application to growth data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 67-89, January.
- Marcelo Fernandes & Emmanuel Guerre & Eduardo Horta, 2021.
"Smoothing Quantile Regressions,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 338-357, January.
- Fernandes, Marcelo & Guerre, Emmanuel & Horta, Eduardo, 2017. "Smoothing quantile regressions," Textos para discussão 457, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Marcelo Fernandes & Emmanuel Guerre & Eduardo Horta, 2019. "Smoothing quantile regressions," Papers 1905.08535, arXiv.org, revised Aug 2019.
- Salam A. Abbas & Yunqing Xuan & Xiaomeng Song, 2019. "Quantile Regression Based Methods for Investigating Rainfall Trends Associated with Flooding and Drought Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4249-4264, September.
- Yan Zhou & Weiping Zhang & Hongmei Lin & Heng Lian, 2022. "Partially linear functional quantile regression in a reproducing kernel Hilbert space," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 34(4), pages 789-803, October.
- Battagliola, Maria Laura & Sørensen, Helle & Tolver, Anders & Staicu, Ana-Maria, 2022. "A bias-adjusted estimator in quantile regression for clustered data," Econometrics and Statistics, Elsevier, vol. 23(C), pages 165-186.
- Yadolah Dodge & Joe Whittaker, 2009. "Partial quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 35-57, June.
- Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
- Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
- Yuan, Ming, 2006. "GACV for quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 813-829, February.
- Antonio Cuevas & Manuel Febrero & Ricardo Fraiman, 2007. "Robust estimation and classification for functional data via projection-based depth notions," Computational Statistics, Springer, vol. 22(3), pages 481-496, September.
- Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Lehn, Friederike & Bahrs, Enno, 2018. "Quantile Regression Of German Standard Farmland Values: Do The Impacts Of Determinants Vary Across The Conditional Distribution?," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 50(4), pages 453-477, November.
- Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zouaoui Chikr-Elmezouar & Ali Laksaci & Ibrahim M. Almanjahie & Fatimah Alshahrani, 2025. "Nonparametric Estimation of Dynamic Value-at-Risk: Multifunctional GARCH Model Case," Mathematics, MDPI, vol. 13(12), pages 1-20, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ufuk Beyaztas & Han Lin Shang & Aylin Alin, 2022. "Function-on-Function Partial Quantile Regression," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 149-174, March.
- Li, Meng & Wang, Kehui & Maity, Arnab & Staicu, Ana-Maria, 2022. "Inference in functional linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Maria Laura Battagliola & Helle Sørensen & Anders Tolver & Ana-Maria Staicu, 2025. "Quantile Regression for Longitudinal Functional Data with Application to Feed Intake of Lactating Sows," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 211-230, March.
- repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
- Ma, Haiqiang & Li, Ting & Zhu, Hongtu & Zhu, Zhongyi, 2019. "Quantile regression for functional partially linear model in ultra-high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 135-147.
- Chengxin Wu & Nengxiang Ling & Philippe Vieu & Guoliang Fan, 2025. "Composite quantile estimation in partially functional linear regression model with randomly censored responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(1), pages 28-47, March.
- Tran, Ngoc M. & Burdejová, Petra & Ospienko, Maria & Härdle, Wolfgang K., 2019.
"Principal component analysis in an asymmetric norm,"
Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 1-21.
- Tran, Ngoc Mai & Osipenko, Maria & Härdle, Wolfgang Karl, 2014. "Principal component analysis in an asymmetric norm," SFB 649 Discussion Papers 2014-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Tran, Ngoc Mai & Burdejová, Petra & Osipenko, Maria & Härdle, Wolfgang Karl, 2016. "Principal component analysis in an asymmetric norm," SFB 649 Discussion Papers 2016-040, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Hernandez Roig, Harold Antonio & Aguilera Morillo, María del Carmen & Aguilera, Ana M. & Preda, Cristian, 2023. "Penalized function-on-function partial leastsquares regression," DES - Working Papers. Statistics and Econometrics. WS 37758, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
- Han Shang, 2014.
"A survey of functional principal component analysis,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
- Han Lin Shang, 2011. "A survey of functional principal component analysis," Monash Econometrics and Business Statistics Working Papers 6/11, Monash University, Department of Econometrics and Business Statistics.
- Qian Yan & Hanyu Li & Chengmei Niu, 2023. "Optimal subsampling for functional quantile regression," Statistical Papers, Springer, vol. 64(6), pages 1943-1968, December.
- Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Tang Qingguo & Bian Minjie, 2021. "Estimation for functional linear semiparametric model," Statistical Papers, Springer, vol. 62(6), pages 2799-2823, December.
- Liang, Weijuan & Zhang, Qingzhao & Ma, Shuangge, 2023. "Locally sparse quantile estimation for a partially functional interaction model," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Jianing Fan & Hans‐Georg Müller, 2022. "Conditional distribution regression for functional responses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 502-524, June.
- Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
- Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
- Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.
- Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Zbonakova, Lenka & Härdle, Wolfgang Karl & Wang, Weining, 2016. "Time varying quantile Lasso," SFB 649 Discussion Papers 2016-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Agarwal, Gaurav & Tu, Wei & Sun, Ying & Kong, Linglong, 2022. "Flexible quantile contour estimation for multivariate functional data: Beyond convexity," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
More about this item
Keywords
Functional data; Derivative-free optimization; Quantile regression; Smoothing parameter;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01494-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.