IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v185y2021ics0047259x21000476.html
   My bibliography  Save this article

Fast implementation of partial least squares for function-on-function regression

Author

Listed:
  • Zhou, Zhiyang

Abstract

People employ the function-on-function regression to model the relationship between two stochastic processes. Fitting this model, widely used strategies include functional partial least squares algorithms which typically require iterative eigen-decomposition. Here we introduce a route of functional partial least squares based upon Krylov subspace. Our route can be expressed in two forms equivalent to each other in exact arithmetic: One is non-iterative with explicit expressions of the estimator and prediction, facilitating the theoretical derivation and potential extensions; the other one stabilizes numerical outputs. The consistency of estimation and prediction is established under regularity conditions. It is highlighted that our proposal is competitive in terms of both estimation and prediction accuracy but consumes much less execution time.

Suggested Citation

  • Zhou, Zhiyang, 2021. "Fast implementation of partial least squares for function-on-function regression," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000476
    DOI: 10.1016/j.jmva.2021.104769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104769?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoxiao Sun & Pang Du & Xiao Wang & Ping Ma, 2018. "Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1601-1611, October.
    2. Wei Wang, 2014. "Linear mixed function-on-function regression models," Biometrics, The International Biometric Society, vol. 70(4), pages 794-801, December.
    3. Benatia, David & Carrasco, Marine & Florens, Jean-Pierre, 2017. "Functional linear regression with functional response," Journal of Econometrics, Elsevier, vol. 201(2), pages 269-291.
    4. Marco Singer & Tatyana Krivobokova & Axel Munk & Bert de Groot, 2016. "Partial least squares for dependent data," Biometrika, Biometrika Trust, vol. 103(2), pages 351-362.
    5. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    6. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    7. Ferraty, F. & Van Keilegom, I. & Vieu, P., 2012. "Regression when both response and predictor are functions," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 10-28.
    8. Ferraty, F. & Van Keilegom, Ingrid & Vieu, P., 2012. "Regression when both response and predictor are functions," LIDAM Reprints ISBA 2012004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Ruiyan Luo & Xin Qi, 2017. "Function-on-Function Linear Regression by Signal Compression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 690-705, April.
    10. Yue Wang & Joseph G. Ibrahim & Hongtu Zhu, 2020. "Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study," Biometrics, The International Biometric Society, vol. 76(4), pages 1109-1119, December.
    11. Lian, Heng, 2015. "Minimax prediction for functional linear regression with functional responses in reproducing kernel Hilbert spaces," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 395-402.
    12. Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hernandez Roig, Harold Antonio & Aguilera Morillo, María del Carmen & Aguilera, Ana M. & Preda, Cristian, 2023. "Penalized function-on-function partial leastsquares regression," DES - Working Papers. Statistics and Econometrics. WS 37758, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    2. Centofanti, Fabio & Fontana, Matteo & Lepore, Antonio & Vantini, Simone, 2022. "Smooth LASSO estimator for the Function-on-Function linear regression model," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    3. Ruiyan Luo & Xin Qi, 2022. "Restricted function‐on‐function linear regression model," Biometrics, The International Biometric Society, vol. 78(3), pages 1031-1044, September.
    4. Fabio Centofanti & Antonio Lepore & Alessandra Menafoglio & Biagio Palumbo & Simone Vantini, 2023. "Adaptive smoothing spline estimator for the function-on-function linear regression model," Computational Statistics, Springer, vol. 38(1), pages 191-216, March.
    5. Shuzhi Zhu & Peixin Zhao, 2019. "Tests for the linear hypothesis in semi-functional partial linear regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(2), pages 125-148, March.
    6. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    7. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    8. Qi, Xin & Luo, Ruiyan, 2018. "Function-on-function regression with thousands of predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 51-66.
    9. Maistre, Samuel & Patilea, Valentin, 2020. "Testing for the significance of functional covariates," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    10. Wang, Bo & Xu, Aiping, 2019. "Gaussian process methods for nonparametric functional regression with mixed predictors," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 80-90.
    11. Wang, Shaoli & Huang, Mian & Wu, Xing & Yao, Weixin, 2016. "Mixture of functional linear models and its application to CO2-GDP functional data," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 1-15.
    12. Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
    13. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    14. Cody Carroll & Hans‐Georg Müller, 2023. "Latent deformation models for multivariate functional data and time‐warping separability," Biometrics, The International Biometric Society, vol. 79(4), pages 3345-3358, December.
    15. Joydeep Chowdhury & Probal Chaudhuri, 2020. "Convergence rates for kernel regression in infinite-dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 471-509, April.
    16. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    17. Ismail Shah & Francesco Lisi, 2020. "Forecasting of electricity price through a functional prediction of sale and purchase curves," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 242-259, March.
    18. Ali Mahzarnia & Jun Song, 2022. "Multivariate functional group sparse regression: Functional predictor selection," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-22, April.
    19. Heungsun Hwang & Hye Suk & Yoshio Takane & Jang-Han Lee & Jooseop Lim, 2015. "Generalized Functional Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 101-125, March.
    20. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.