IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v115y2020i529p90-106.html
   My bibliography  Save this article

Quantile Function on Scalar Regression Analysis for Distributional Data

Author

Listed:
  • Hojin Yang
  • Veerabhadran Baladandayuthapani
  • Arvind U.K. Rao
  • Jeffrey S. Morris

Abstract

Radiomics involves the study of tumor images to identify quantitative markers explaining cancer heterogeneity. The predominant approach is to extract hundreds to thousands of image features, including histogram features comprised of summaries of the marginal distribution of pixel intensities, which leads to multiple testing problems and can miss out on insights not contained in the selected features. In this paper, we present methods to model the entire marginal distribution of pixel intensities via the quantile function as functional data, regressed on a set of demographic, clinical, and genetic predictors to investigate their effects of imaging-based cancer heterogeneity. We call this approach quantile functional regression, regressing subject-specific marginal distributions across repeated measurements on a set of covariates, allowing us to assess which covariates are associated with the distribution in a global sense, as well as to identify distributional features characterizing these differences, including mean, variance, skewness, heavy-tailedness, and various upper and lower quantiles. To account for smoothness in the quantile functions, account for intrafunctional correlation, and gain statistical power, we introduce custom basis functions we call quantlets that are sparse, regularized, near-lossless, and empirically defined, adapting to the features of a given dataset and containing a Gaussian subspace so non-Gaussianness can be assessed. We fit this model using a Bayesian framework that uses nonlinear shrinkage of quantlet coefficients to regularize the functional regression coefficients and provides fully Bayesian inference after fitting a Markov chain Monte Carlo. We demonstrate the benefit of the basis space modeling through simulation studies, and apply the method to Magnetic resonance imaging (MRI)-based radiomic dataset from Glioblastoma Multiforme to relate imaging-based quantile functions to various demographic, clinical, and genetic predictors, finding specific differences in tumor pixel intensity distribution between males and females and between tumors with and without DDIT3 mutations. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

Suggested Citation

  • Hojin Yang & Veerabhadran Baladandayuthapani & Arvind U.K. Rao & Jeffrey S. Morris, 2020. "Quantile Function on Scalar Regression Analysis for Distributional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 90-106, January.
  • Handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:90-106
    DOI: 10.1080/01621459.2019.1609969
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2019.1609969
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2019.1609969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadao Hoshino, 2024. "Functional Spatial Autoregressive Models," Papers 2402.14763, arXiv.org, revised Oct 2024.
    2. Ghosal, Rahul & Ghosh, Sujit & Urbanek, Jacek & Schrack, Jennifer A. & Zipunnikov, Vadim, 2023. "Shape-constrained estimation in functional regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    3. Chao Zhang & Piotr Kokoszka & Alexander Petersen, 2022. "Wasserstein autoregressive models for density time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 30-52, January.
    4. Xie, Haihan & Kong, Linglong, 2023. "Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    5. Ufuk Beyaztas & Han Lin Shang & Aylin Alin, 2022. "Function-on-Function Partial Quantile Regression," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 149-174, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:115:y:2020:i:529:p:90-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.