IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i1d10.1007_s00180-024-01473-6.html
   My bibliography  Save this article

Degree selection methods for curve estimation via Bernstein polynomials

Author

Listed:
  • Juliana Freitas de Mello e Silva

    (Universidade Federal de Minas Gerais)

  • Sujit Kumar Ghosh

    (North Carolina State University)

  • Vinícius Diniz Mayrink

    (Universidade Federal de Minas Gerais)

Abstract

Bernstein Polynomial (BP) bases can uniformly approximate any continuous function based on observed noisy samples. However, a persistent challenge is the data-driven selection of a suitable degree for the BPs. In the absence of noise, asymptotic theory suggests that a larger degree leads to better approximation. However, in the presence of noise, which reduces bias, a larger degree also results in larger variances due to high-dimensional parameter estimation. Thus, a balance in the classic bias-variance trade-off is essential. The main objective of this work is to determine the minimum possible degree of the approximating BPs using probabilistic methods that are robust to various shapes of an unknown continuous function. Beyond offering theoretical guidance, the paper includes numerical illustrations to address the issue of determining a suitable degree for BPs in approximating arbitrary continuous functions.

Suggested Citation

  • Juliana Freitas de Mello e Silva & Sujit Kumar Ghosh & Vinícius Diniz Mayrink, 2025. "Degree selection methods for curve estimation via Bernstein polynomials," Computational Statistics, Springer, vol. 40(1), pages 1-26, January.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01473-6
    DOI: 10.1007/s00180-024-01473-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01473-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01473-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    2. Yuhui Chen & Timothy Hanson & Jiajia Zhang, 2014. "Accelerated hazards model based on parametric families generalized with Bernstein polynomials," Biometrics, The International Biometric Society, vol. 70(1), pages 192-201, March.
    3. S. McKay Curtis & Sujit K. Ghosh, 2011. "A variable selection approach to monotonic regression with Bernstein polynomials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 961-976, February.
    4. Zhong Guan, 2016. "Efficient and robust density estimation using Bernstein type polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 250-271, June.
    5. Bruce M. Brown & Song Xi Chen, 1999. "Beta‐Bernstein Smoothing for Regression Curves with Compact Support," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 47-59, March.
    6. Aurélie Bertrand & Ingrid Van Keilegom & Catherine Legrand, 2019. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," Biometrics, The International Biometric Society, vol. 75(1), pages 297-307, March.
    7. Haiming Zhou & Timothy Hanson, 2018. "A Unified Framework for Fitting Bayesian Semiparametric Models to Arbitrarily Censored Survival Data, Including Spatially Referenced Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 571-581, April.
    8. Osman, Muhtarjan & Ghosh, Sujit K., 2012. "Nonparametric regression models for right-censored data using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 559-573.
    9. Sonia Petrone, 1999. "Random Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 373-393, September.
    10. Qingning Zhou & Tao Hu & Jianguo Sun, 2017. "A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 664-672, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    3. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    4. Manté, Claude, 2015. "Iterated Bernstein operators for distribution function and density estimation: Balancing between the number of iterations and the polynomial degree," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 68-84.
    5. Zhong Guan, 2017. "Bernstein polynomial model for grouped continuous data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 831-848, October.
    6. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    7. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    8. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    9. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    10. Fourrier-Nicolaï Edwin & Lubrano Michel, 2024. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 319-336, April.
    11. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    13. Mingyue Du & Xiyuan Gao & Ling Chen, 2024. "Regression analysis of doubly censored failure time data with ancillary information," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(3), pages 667-679, July.
    14. Tian Tian & Jianguo Sun, 2024. "Variable Selection for Nonlinear Covariate Effects with Interval-Censored Failure Time Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(1), pages 185-202, April.
    15. Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.
    16. Bouezmarni, Taoufik & El Ghouch, Anouar & Taamouti, Abderrahim, 2011. "Bernstein estimator for unbounded density copula," UC3M Working papers. Economics we1143, Universidad Carlos III de Madrid. Departamento de Economía.
    17. Liu, Wenting & Li, Huiqiong & Tang, Niansheng & Lyu, Jun, 2024. "Variational Bayesian approach for analyzing interval-censored data under the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    18. Aurélie Bertrand & Ingrid Van Keilegom & Catherine Legrand, 2019. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," Biometrics, The International Biometric Society, vol. 75(1), pages 297-307, March.
    19. Bertrand, Aurelie & Van Keilegom, Ingrid & Legrand, Catherine, 2017. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," LIDAM Discussion Papers ISBA 2017025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Hanson, Timothy E. & de Carvalho, Miguel & Chen, Yuhui, 2017. "Bernstein polynomial angular densities of multivariate extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 60-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01473-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.