IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i9p2729-2741.html
   My bibliography  Save this article

Shape restricted nonparametric regression with Bernstein polynomials

Author

Listed:
  • Wang, J.
  • Ghosh, S.K.

Abstract

The objective of this article is to develop a computationally efficient estimator of the regression function subject to various shape constraints. In particular, nonparametric estimators of monotone and/or convex (concave) regression functions are obtained by using a nested sequence of Bernstein polynomials. One of the key distinguishing features of the proposed estimator is that a given shape constraint (e.g., monotonicity and/or convexity) is maintained for any finite sample size and satisfied over the entire support of the predictor space. Moreover, it is shown that the Bernstein polynomial based regression estimator can be obtained as a solution of a constrained least squares method and hence the estimator can be computed efficiently using a quadratic programming algorithm. Finally, the asymptotic properties (e.g., strong uniform consistency) of the estimator are established under very mild conditions, and finite sample properties are explored using several simulation studies and real data analysis. The predictive performances are compared with some of the existing methods.

Suggested Citation

  • Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2729-2741
    DOI: 10.1016/j.csda.2012.02.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001004
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. McKay Curtis & Sujit K. Ghosh, 2011. "A variable selection approach to monotonic regression with Bernstein polynomials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 961-976, February.
    2. Bornkamp, Björn & Ickstadt, Katja, 2009. "A Note on B-Splines for Semiparametric Elicitation," The American Statistician, American Statistical Association, vol. 63(4), pages 373-377.
    3. I-Shou Chang & Chao A. Hsiung & Yuh-Jenn Wu & Che-Chi Yang, 2005. "Bayesian Survival Analysis Using Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(3), pages 447-466.
    4. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    5. Chak, Pok Man & Madras, Neal & Smith, Barry, 2005. "Semi-nonparametric estimation with Bernstein polynomials," Economics Letters, Elsevier, vol. 89(2), pages 153-156, November.
    6. Gallant, A. Ronald & Golub, Gene H., 1984. "Imposing curvature restrictions on flexible functional forms," Journal of Econometrics, Elsevier, vol. 26(3), pages 295-321, December.
    7. Terrell, Dek, 1996. "Incorporating Monotonicity and Concavity Conditions in Flexible Functional Forms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(2), pages 179-194, March-Apr.
    8. Sonia Petrone, 1999. "Random Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 373-393.
    9. Melanie Birke & Holger Dette, 2007. "Estimating a Convex Function in Nonparametric Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 384-404.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manté, Claude, 2015. "Iterated Bernstein operators for distribution function and density estimation: Balancing between the number of iterations and the polynomial degree," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 68-84.
    2. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    3. Hu, Qinqin & Zeng, Peng & Lin, Lu, 2015. "The dual and degrees of freedom of linearly constrained generalized lasso," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 13-26.
    4. Xiaohong Chen & Yin Jia Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: a Gentle Guide," Cowles Foundation Discussion Papers 2032, Cowles Foundation for Research in Economics, Yale University.
    5. repec:bla:scjsta:v:44:y:2017:i:4:p:989-1008 is not listed on IDEAS
    6. Claudia Köllmann & Björn Bornkamp & Katja Ickstadt, 2014. "Unimodal regression using Bernstein–Schoenberg splines and penalties," Biometrics, The International Biometric Society, vol. 70(4), pages 783-793, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2729-2741. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.