IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i4d10.1007_s00180-023-01417-6.html
   My bibliography  Save this article

Variational Bayesian analysis for two-part latent variable model

Author

Listed:
  • Yemao Xia

    (Nanjing Forestry University)

  • Jinye Chen

    (Nanjing Forestry University)

  • Depeng Jiang

    (University of Manitoba)

Abstract

It is recommended to use two-part models for analyzing zero-inflated data that exhibit a spike at zero or have a large proportion of participants with zero values. This paper presents a variational Bayesian inference procedure for the analysis of a two-part latent variable model. We take advantage of the Pólya Gamma stochastic representation to approximate the posterior distribution via a mean-field variational method. We propose a scheme to update the variational parameters using the coordinate ascent inference algorithm and develop a variational Bayes based procedure for the variable selection and model assessment. We conduct simulation studies to assess the performance of our proposed method and compare it with the Markov Chains Monte Carlo sampling method. Our results show that the proposed variational Bayesian approach achieves computational efficiency without sacrificing estimation accuracy. We further illustrate the practical merits of the proposed approach by analyzing household finance survey data.

Suggested Citation

  • Yemao Xia & Jinye Chen & Depeng Jiang, 2024. "Variational Bayesian analysis for two-part latent variable model," Computational Statistics, Springer, vol. 39(4), pages 2259-2290, June.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-023-01417-6
    DOI: 10.1007/s00180-023-01417-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01417-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01417-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    3. van Rooij, Maarten & Lusardi, Annamaria & Alessie, Rob, 2011. "Financial literacy and stock market participation," Journal of Financial Economics, Elsevier, vol. 101(2), pages 449-472, August.
    4. Yixin Wang & David M. Blei, 2019. "Frequentist Consistency of Variational Bayes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1147-1161, July.
    5. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    6. Cragg, John G, 1971. "Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods," Econometrica, Econometric Society, vol. 39(5), pages 829-844, September.
    7. Duan, Naihua, et al, 1983. "A Comparison of Alternative Models for the Demand for Medical Care," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 115-126, April.
    8. Ming-Hui Chen, 2004. "Bayesian criterion based model assessment for categorical data," Biometrika, Biometrika Trust, vol. 91(1), pages 45-63, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Zhang & Yihui Zhang & Yemao Xia, 2024. "Bayesian Feature Extraction for Two-Part Latent Variable Model with Polytomous Manifestations," Mathematics, MDPI, vol. 12(5), pages 1-23, March.
    2. Mullahy, John, 1998. "Much ado about two: reconsidering retransformation and the two-part model in health econometrics," Journal of Health Economics, Elsevier, vol. 17(3), pages 247-281, June.
    3. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    4. Glenn W. Harrison & James P. Feehan & Alison C. Edwards & Jorge Segovia, 2003. "Cigarette Smoking and the Cost of Hospital and Physician Care," Canadian Public Policy, University of Toronto Press, vol. 29(1), pages 1-19, March.
    5. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    6. Farrell, Susan & Manning, Willard G. & Finch, Michael D., 2003. "Alcohol dependence and the price of alcoholic beverages," Journal of Health Economics, Elsevier, vol. 22(1), pages 117-147, January.
    7. Martijn van Hasselt, 2005. "Bayesian Sampling Algorithms for the Sample Selection and Two-Part Models," Computing in Economics and Finance 2005 241, Society for Computational Economics.
    8. Hersche Markus & Moor Elias, 2020. "Identification and Estimation of Intensive Margin Effects by Difference-in-Difference Methods," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 272-285, January.
    9. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    10. Marion Kohler & Anthony Rossiter, 2005. "Property Owners in Australia: A Snapshot," RBA Research Discussion Papers rdp2005-03, Reserve Bank of Australia.
    11. Theodore Eisenberg & Thomas Eisenberg & Martin T. Wells & Min Zhang, 2015. "Addressing the Zeros Problem: Regression Models for Outcomes with a Large Proportion of Zeros, with an Application to Trial Outcomes," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 12(1), pages 161-186, March.
    12. Madden, David, 2008. "Sample selection versus two-part models revisited: The case of female smoking and drinking," Journal of Health Economics, Elsevier, vol. 27(2), pages 300-307, March.
    13. Liu, Lei & Strawderman, Robert L. & Cowen, Mark E. & Shih, Ya-Chen T., 2010. "A flexible two-part random effects model for correlated medical costs," Journal of Health Economics, Elsevier, vol. 29(1), pages 110-123, January.
    14. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    15. Fong, Joelle H., 2020. "Taking control: Active investment choice in Singapore’s national defined contribution scheme," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    16. Kevin E. Staub, 2014. "A Causal Interpretation of Extensive and Intensive Margin Effects in Generalized Tobit Models," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 371-375, May.
    17. Heres-Del-Valle, David & Niemeier, Deb, 2011. "CO2 emissions: Are land-use changes enough for California to reduce VMT? Specification of a two-part model with instrumental variables," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 150-161, January.
    18. Marianne P. Bitler & Christopher S. Carpenter & Madeline Zavodny, 2010. "Effects of venue‐specific state clean indoor air laws on smoking‐related outcomes," Health Economics, John Wiley & Sons, Ltd., vol. 19(12), pages 1425-1440, December.
    19. Dow, William H., 1995. "Unconditional Demand for Curative Health Inputs: Does Selection on Health Status Matter in the Long Run?," Center Discussion Papers 321330, Yale University, Economic Growth Center.
    20. Patrick Puhani, 2000. "The Heckman Correction for Sample Selection and Its Critique," Journal of Economic Surveys, Wiley Blackwell, vol. 14(1), pages 53-68, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:4:d:10.1007_s00180-023-01417-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.