IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i2d10.1007_s00180-023-01334-8.html
   My bibliography  Save this article

A comprehensive framework for link prediction in multiplex networks

Author

Listed:
  • Fengqin Tang

    (Huaibei Normal University)

  • Cuixia Li

    (Xuzhou University of Technology)

  • Chungning Wang

    (Lanzhou University of Finance and Economics)

  • Yi Yang

    (Huaibei Normal University)

  • Xuejing Zhao

    (Lanzhou University)

Abstract

The idea of predicting links in multiplex networks has gained increasing interest in recent years. In this paper, we propose a comprehensive framework which benefits from the structural information of auxiliary layers to predict links on a target layer of multiplex networks. Specifically, we assume that the likelihood of the existence of a link between two nodes is determined by the contributions from both the nodes’ neighbors on the target layer and their counterparts’ neighbors on a manually network generated by auxiliary layers. The final likelihood matrix is acquired by an iterative algorithm. In addition, we show advantages of our methods for predicting links on sparse and dense networks as well as on networks with assortative and disassortative structural layers. The effectiveness of the proposed methods are evaluated through extensive experiments on real-world multiplex networks.

Suggested Citation

  • Fengqin Tang & Cuixia Li & Chungning Wang & Yi Yang & Xuejing Zhao, 2024. "A comprehensive framework for link prediction in multiplex networks," Computational Statistics, Springer, vol. 39(2), pages 939-961, April.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-023-01334-8
    DOI: 10.1007/s00180-023-01334-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01334-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01334-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yasami, Yasser & Safaei, Farshad, 2018. "A novel multilayer model for missing link prediction and future link forecasting in dynamic complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 2166-2197.
    2. L. Bargigli & G. di Iasio & L. Infante & F. Lillo & F. Pierobon, 2015. "The multiplex structure of interbank networks," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 673-691, April.
    3. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    4. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    5. Manlio De Domenico & Vincenzo Nicosia & Alexandre Arenas & Vito Latora, 2015. "Structural reducibility of multilayer networks," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Shenshen Bai & Longjie Li & Jianjun Cheng & Shijin Xu & Xiaoyun Chen, 2018. "Predicting Missing Links Based on a New Triangle Structure," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    3. Elosegui, Pedro & Forte, Federico D. & Montes-Rojas, Gabriel, 2022. "Network structure and fragmentation of the Argentinean interbank markets," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 3(3).
    4. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    5. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    6. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
    7. Shugang Li & Ziming Wang & Beiyan Zhang & Boyi Zhu & Zhifang Wen & Zhaoxu Yu, 2022. "The Research of “Products Rapidly Attracting Users” Based on the Fully Integrated Link Prediction Algorithm," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
    8. Zhang, Xue & Wang, Xiaojie & Zhao, Chengli & Yi, Dongyun & Xie, Zheng, 2014. "Degree-corrected stochastic block models and reliability in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 553-559.
    9. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    10. Zhou, Yinzuo & Wu, Chencheng & Tan, Lulu, 2021. "Biased random walk with restart for link prediction with graph embedding method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    11. Iori, Giulia & Mantegna, Rosario N. & Marotta, Luca & Miccichè, Salvatore & Porter, James & Tumminello, Michele, 2015. "Networked relationships in the e-MID interbank market: A trading model with memory," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 98-116.
    12. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    13. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    14. Zeng, Shan, 2016. "Link prediction based on local information considering preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 537-542.
    15. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    16. Wang, Xiaojie & Zhang, Xue & Zhao, Chengli & Xie, Zheng & Zhang, Shengjun & Yi, Dongyun, 2015. "Predicting link directions using local directed path," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 260-267.
    17. Charikhi, Mourad, 2024. "Association of the PageRank algorithm with similarity-based methods for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    18. Li, Mingtao & Cui, Jin & Zhang, Juan & Pei, Xin & Sun, Guiquan, 2022. "Transmission characteristic and dynamic analysis of COVID-19 on contact network with Tianjin city in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    19. Mingyu Nan & Yifan Zhu & Jie Zhang & Tao Wang & Xin Zhou, 2022. "MSGWO-MKL-SVM: A Missing Link Prediction Method for UAV Swarm Network Based on Time Series," Mathematics, MDPI, vol. 10(14), pages 1-29, July.
    20. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-023-01334-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.