IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v460y2016icp361-373.html
   My bibliography  Save this article

Link prediction based on temporal similarity metrics using continuous action set learning automata

Author

Listed:
  • Moradabadi, Behnaz
  • Meybodi, Mohammad Reza

Abstract

Link prediction is a social network research area that tries to predict future links using network structure. The main approaches in this area are based on predicting future links using network structure at a specific period, without considering the links behavior through different periods. For example, a common traditional approach in link prediction calculates a chosen similarity metric for each non-connected link and outputs the links with higher similarity scores as the prediction result. In this paper, we propose a new link prediction method based on temporal similarity metrics and Continuous Action set Learning Automata (CALA). The proposed method takes advantage of using different similarity metrics as well as different time periods. In the proposed algorithm, we try to model the link prediction problem as a noisy optimization problem and use a team of CALAs to solve the noisy optimization problem. CALA is a reinforcement based optimization tool which tries to learn the optimal behavior from the environment feedbacks. To determine the importance of different periods and similarity metrics on the prediction result, we define a coefficient for each of different periods and similarity metrics and use a CALA for each coefficient. Each CALA tries to learn the true value of the corresponding coefficient. Final link prediction is obtained from a combination of different similarity metrics in different times based on the obtained coefficients. The link prediction results reported here show satisfactory of the proposed method for some social network data sets.

Suggested Citation

  • Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2016. "Link prediction based on temporal similarity metrics using continuous action set learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 361-373.
  • Handle: RePEc:eee:phsmap:v:460:y:2016:i:c:p:361-373
    DOI: 10.1016/j.physa.2016.03.102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116301005
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.03.102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    2. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    3. Zan Huang & Dennis K. J. Lin, 2009. "The Time-Series Link Prediction Problem with Applications in Communication Surveillance," INFORMS Journal on Computing, INFORMS, vol. 21(2), pages 286-303, May.
    4. Xie, Yan-Bo & Zhou, Tao & Wang, Bing-Hong, 2008. "Scale-free networks without growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(7), pages 1683-1688.
    5. Rezvanian, Alireza & Rahmati, Mohammad & Meybodi, Mohammad Reza, 2014. "Sampling from complex networks using distributed learning automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 224-234.
    6. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    2. Ma, Xiaoke & Sun, Penggang & Wang, Yu, 2018. "Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 121-136.
    3. Zhang, Ting & Zhang, Kun & Li, Xun & Lv, Laishui & Sun, Qi, 2021. "Semi-supervised link prediction based on non-negative matrix factorization for temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2017. "A novel time series link prediction method: Learning automata approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 422-432.
    5. Yin, Likang & Zheng, Haoyang & Bian, Tian & Deng, Yong, 2017. "An evidential link prediction method and link predictability based on Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 699-712.
    6. Assouli, Nora & Benahmed, Khelifa & Gasbaoui, Brahim, 2021. "How to predict crime — informatics-inspired approach from link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moradabadi, Behnaz & Meybodi, Mohammad Reza, 2017. "A novel time series link prediction method: Learning automata approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 422-432.
    2. Zeng, Shan, 2016. "Link prediction based on local information considering preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 537-542.
    3. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    4. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    5. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    6. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    7. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    8. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    9. Xiaoji Wan & Fen Chen & Hailin Li & Weibin Lin, 2022. "Potentially Related Commodity Discovery Based on Link Prediction," Mathematics, MDPI, vol. 10(19), pages 1-27, October.
    10. Víctor Martínez & Fernando Berzal & Juan-Carlos Cubero, 2019. "NOESIS: A Framework for Complex Network Data Analysis," Complexity, Hindawi, vol. 2019, pages 1-14, October.
    11. Najari, Shaghayegh & Salehi, Mostafa & Ranjbar, Vahid & Jalili, Mahdi, 2019. "Link prediction in multiplex networks based on interlayer similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    12. Liu, Shuxin & Ji, Xinsheng & Liu, Caixia & Bai, Yi, 2017. "Extended resource allocation index for link prediction of complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 174-183.
    13. Sherkat, Ehsan & Rahgozar, Maseud & Asadpour, Masoud, 2015. "Structural link prediction based on ant colony approach in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 80-94.
    14. Aziz, Furqan & Gul, Haji & Muhammad, Ishtiaq & Uddin, Irfan, 2020. "Link prediction using node information on local paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    15. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    16. Chunning Wang & Fengqin Tang & Xuejing Zhao, 2023. "LPGRI: A Global Relevance-Based Link Prediction Approach for Multiplex Networks," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    17. Wahid-Ul-Ashraf, Akanda & Budka, Marcin & Musial, Katarzyna, 2019. "How to predict social relationships — Physics-inspired approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1110-1129.
    18. Chen, Guangfu & Xu, Chen & Wang, Jingyi & Feng, Jianwen & Feng, Jiqiang, 2020. "Robust non-negative matrix factorization for link prediction in complex networks using manifold regularization and sparse learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    19. Wu, Jiehua & Shen, Jing & Zhou, Bei & Zhang, Xiayan & Huang, Bohuai, 2019. "General link prediction with influential node identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 996-1007.
    20. Xu-Wen Wang & Lorenzo Madeddu & Kerstin Spirohn & Leonardo Martini & Adriano Fazzone & Luca Becchetti & Thomas P. Wytock & István A. Kovács & Olivér M. Balogh & Bettina Benczik & Mátyás Pétervári & Be, 2023. "Assessment of community efforts to advance network-based prediction of protein–protein interactions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:460:y:2016:i:c:p:361-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.