IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i2d10.1007_s00180-022-01308-2.html
   My bibliography  Save this article

Quantile regression with interval-censored data in questionnaire-based studies

Author

Listed:
  • Angel G. Angelov

    (Umeå University
    Sofia University St. Kliment Ohridski)

  • Magnus Ekström

    (Umeå University
    Swedish University of Agricultural Sciences)

  • Klarizze Puzon

    (United Nations University World Institute for Development Economics Research)

  • Agustin Arcenas

    (University of the Philippines, Diliman)

  • Bengt Kriström

    (Swedish University of Agricultural Sciences)

Abstract

Interval-censored data can arise in questionnaire-based studies when the respondent gives an answer in the form of an interval without having pre-specified ranges. Such data are called self-selected interval data. In this case, the assumption of independent censoring is not fulfilled, and therefore the ordinary methods for interval-censored data are not suitable. This paper explores a quantile regression model for self-selected interval data and suggests an estimator based on estimating equations. The consistency of the estimator is shown. Bootstrap procedures for constructing confidence intervals are considered. A simulation study indicates satisfactory performance of the proposed methods. An application to data concerning price estimates is presented.

Suggested Citation

  • Angel G. Angelov & Magnus Ekström & Klarizze Puzon & Agustin Arcenas & Bengt Kriström, 2024. "Quantile regression with interval-censored data in questionnaire-based studies," Computational Statistics, Springer, vol. 39(2), pages 583-603, April.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01308-2
    DOI: 10.1007/s00180-022-01308-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01308-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01308-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    2. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2019. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Reprints ISBA 2019054, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. ChunJing Li & Yun Li & Xue Ding & XiaoGang Dong, 2020. "DGQR estimation for interval censored quantile regression with varying-coefficient models," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
    4. Belyaev, Yuri & Kriström, Bengt, 2012. "Two-step approach to Self-Selected Interval Data in Elicitation Surveys," CERE Working Papers 2012:10, CERE - the Center for Environmental and Resource Economics.
    5. Angel G. Angelov & Magnus Ekström, 2017. "Nonparametric estimation for self-selected interval data collected through a two-stage approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 377-399, May.
    6. Changyong Feng & Hongyue Wang & Yu Han & Yinglin Xia & Xin M. Tu, 2013. "The Mean Value Theorem and Taylor's Expansion in Statistics," The American Statistician, Taylor & Francis Journals, vol. 67(4), pages 245-248, November.
    7. Xiuqing Zhou & Yanqin Feng & Xiuli Du, 2017. "Quantile regression for interval censored data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(8), pages 3848-3863, April.
    8. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2019. "An Adapted Loss Function for Censored Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1126-1137, July.
    9. Pierre-Alexandre Mahieu & François-Charles Wolff & Jason Shogren & Pascal Gastineau, 2017. "Interval bidding in a distribution elicitation format," Applied Economics, Taylor & Francis Journals, vol. 49(51), pages 5200-5211, November.
    10. Belyaev, Yuri & Kriström, Bengt, 2010. "Approach to Analysis of Self-Selected Interval Data," CERE Working Papers 2010:2, CERE - the Center for Environmental and Resource Economics.
    11. Angel G. Angelov & Magnus Ekström, 2019. "Maximum likelihood estimation for survey data with informative interval censoring," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 217-236, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriela M. Rodrigues & Edwin M. M. Ortega & Gauss M. Cordeiro & Roberto Vila, 2023. "Quantile Regression with a New Exponentiated Odd Log-Logistic Weibull Distribution," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    2. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    3. Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
    4. Chengxin Wu & Nengxiang Ling & Philippe Vieu & Guoliang Fan, 2025. "Composite quantile estimation in partially functional linear regression model with randomly censored responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(1), pages 28-47, March.
    5. Lorenzo Tedesco & Ingrid Van Keilegom, 2023. "Comparison of quantile regression curves with censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 829-864, September.
    6. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    7. Angel G. Angelov & Magnus Ekström, 2019. "Maximum likelihood estimation for survey data with informative interval censoring," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 217-236, June.
    8. Mercedes Conde‐Amboage & Ingrid Van Keilegom & Wenceslao González‐Manteiga, 2021. "A new lack‐of‐fit test for quantile regression with censored data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 655-688, June.
    9. Xiaohui Yuan & Xinran Zhang & Wei Guo & Qian Hu, 2024. "An adapted loss function for composite quantile regression with censored data," Computational Statistics, Springer, vol. 39(3), pages 1371-1401, May.
    10. Mingquan Wang & Xiaohua Ma & Xinrui Wang & Jun Wang & Xiuqing Zhou & Qibing Gao, 2025. "Smoothing Estimation of Parameters in Censored Quantile Linear Regression Model," Mathematics, MDPI, vol. 13(2), pages 1-28, January.
    11. Fernando Rios-Avila & Gustavo Canavire-Bacarreza & Flavia Sacco-Capurro, 2024. "Recovering income distribution in the presence of interval-censored data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 22(4), pages 1039-1060, December.
    12. Angel G. Angelov & Magnus Ekström, 2017. "Nonparametric estimation for self-selected interval data collected through a two-stage approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 377-399, May.
    13. Manda, Julius & Feleke, Shiferaw & Mutungi, Christopher & Tufa, Adane H. & Mateete, Bekunda & Abdoulaye, Tahirou & Alene, Arega D., 2024. "Assessing the speed of improved postharvest technology adoption in Tanzania: The role of social learning and agricultural extension services," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    14. Narisetty, Naveen & Koenker, Roger, 2022. "Censored quantile regression survival models with a cure proportion," Journal of Econometrics, Elsevier, vol. 226(1), pages 192-203.
    15. Eliana Christou & Michael G. Akritas, 2019. "Single index quantile regression for censored data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 655-678, December.
    16. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    18. Amir T. Payandeh Najafabadi & Maryam Omidi Najafabadi, 2016. "On the Bayesian estimation for Cronbach's alpha," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(13), pages 2416-2441, October.
    19. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    20. Ying Cui & Limin Peng, 2022. "Assessing dynamic covariate effects with survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 675-699, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:2:d:10.1007_s00180-022-01308-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.