IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i3d10.1007_s00180-023-01352-6.html
   My bibliography  Save this article

An adapted loss function for composite quantile regression with censored data

Author

Listed:
  • Xiaohui Yuan

    (Changchun University of Technology)

  • Xinran Zhang

    (Changchun University of Technology)

  • Wei Guo

    (Changchun University of Technology)

  • Qian Hu

    (Changchun University of Technology)

Abstract

This paper investigates an adapted loss function for the estimation of a linear regression with right censored responses. The adapted loss function could be used in composite quantile regression, which is a good method to handle the responses with high censored rate. Under some regular conditions, we establish the consistency and asymptotic normality of the resulting estimator. For estimation of regression parameters, we propose the MMCD algorithm, which generates satisfactory results for the proposed estimator. In addition, the algorithm can also be extended to the fused adaptive lasso penalized method to identify the interquantile commonality. The finite sample performances of the methods are further illustrated by numerical results and the analysis of two real datasets.

Suggested Citation

  • Xiaohui Yuan & Xinran Zhang & Wei Guo & Qian Hu, 2024. "An adapted loss function for composite quantile regression with censored data," Computational Statistics, Springer, vol. 39(3), pages 1371-1401, May.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01352-6
    DOI: 10.1007/s00180-023-01352-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01352-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01352-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Huixia Judy & Wang, Lan, 2009. "Locally Weighted Censored Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1117-1128.
    2. Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
    3. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2019. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Reprints ISBA 2019054, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Melanie Birke & Sebastien Van Bellegem & Ingrid Van Keilegom, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 168-191, March.
    5. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    6. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
    7. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    8. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    9. Delsol, Laurent & Escanciano, Juan Carlos & Van Keilegom, Ingrid, 2020. "Semiparametric M-estimation with non-smooth criterion functions," LIDAM Reprints ISBA 2020045, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Birke, Melanie & Van Bellegem, Sebastien & Van Keilegom, Ingrid, 2017. "Semi-parametric Estimation in a Single-index Model with Endogenous Variables," LIDAM Reprints ISBA 2017022, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2019. "An Adapted Loss Function for Censored Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1126-1137, July.
    12. Tang, Yanlin & Wang, Huixia Judy, 2015. "Penalized regression across multiple quantiles under random censoring," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 132-146.
    13. Laurent Delsol & Ingrid Van Keilegom, 2020. "Semiparametric M-estimation with non-smooth criterion functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 577-605, April.
    14. Jing Sun & Yunyan Ma, 2017. "Empirical likelihood weighted composite quantile regression with partially missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(1), pages 137-150, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengxin Wu & Nengxiang Ling & Philippe Vieu & Guoliang Fan, 2025. "Composite quantile estimation in partially functional linear regression model with randomly censored responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(1), pages 28-47, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    2. Yue Zhao & Ingrid Van Keilegom & Shanshan Ding, 2022. "Envelopes for censored quantile regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1562-1585, December.
    3. Jad Beyhum & Lorenzo Tedesco & Ingrid Van Keilegom, 2022. "Instrumental variable quantile regression under random right censoring," Papers 2209.01429, arXiv.org, revised Feb 2023.
    4. Mercedes Conde‐Amboage & Ingrid Van Keilegom & Wenceslao González‐Manteiga, 2021. "A new lack‐of‐fit test for quantile regression with censored data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 655-688, June.
    5. Salim Bouzebda & Issam Elhattab & Anouar Abdeldjaoued Ferfache, 2022. "General M-Estimator Processes and their m out of n Bootstrap with Functional Nuisance Parameters," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2961-3005, December.
    6. Gabriela M. Rodrigues & Edwin M. M. Ortega & Gauss M. Cordeiro & Roberto Vila, 2023. "Quantile Regression with a New Exponentiated Odd Log-Logistic Weibull Distribution," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    7. Irene Botosaru & Chris Muris & Senay Sokullu, 2022. "Time-Varying Linear Transformation Models with Fixed Effects and Endogeneity for Short Panels," Department of Economics Working Papers 2022-01, McMaster University.
    8. Chengxin Wu & Nengxiang Ling & Philippe Vieu & Guoliang Fan, 2025. "Composite quantile estimation in partially functional linear regression model with randomly censored responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 34(1), pages 28-47, March.
    9. Angel G. Angelov & Magnus Ekström & Klarizze Puzon & Agustin Arcenas & Bengt Kriström, 2024. "Quantile regression with interval-censored data in questionnaire-based studies," Computational Statistics, Springer, vol. 39(2), pages 583-603, April.
    10. Chen, Songnian, 2023. "Two-step estimation of censored quantile regression for duration models with time-varying regressors," Journal of Econometrics, Elsevier, vol. 235(2), pages 1310-1336.
    11. Yanlin Tang & Huixia Wang & Xuming He & Zhongyi Zhu, 2012. "An informative subset-based estimator for censored quantile regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 635-655, December.
    12. Lorenzo Tedesco & Ingrid Van Keilegom, 2023. "Comparison of quantile regression curves with censored data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 829-864, September.
    13. Chen, Songnian, 2018. "Sequential estimation of censored quantile regression models," Journal of Econometrics, Elsevier, vol. 207(1), pages 30-52.
    14. Xie, Shangyu & Wan, Alan T.K. & Zhou, Yong, 2015. "Quantile regression methods with varying-coefficient models for censored data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 154-172.
    15. Eliana Christou & Michael G. Akritas, 2019. "Single index quantile regression for censored data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 655-678, December.
    16. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    17. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    18. Komunjer, Ivana, 2005. "Quasi-maximum likelihood estimation for conditional quantiles," Journal of Econometrics, Elsevier, vol. 128(1), pages 137-164, September.
    19. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    20. Ying Cui & Limin Peng, 2022. "Assessing dynamic covariate effects with survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 675-699, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01352-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.