IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i3d10.1007_s00180-021-01157-5.html
   My bibliography  Save this article

A new estimation for INAR(1) process with Poisson distribution

Author

Listed:
  • Feilong Lu

    (University of Science and Technology Liaoning
    Jilin University)

  • Dehui Wang

    (Liaoning University)

Abstract

The first-order Poisson autoregressive model may be suitable in situations where the time series data are non-negative integer valued. In this article, we propose a new parameter estimator based on empirical likelihood. Our results show that it can lead to efficient estimators by making effective use of auxiliary information. As a by-product, a test statistic is given, testing the randomness of the parameter. The simulation values show that the proposed test statistic works well. We have applied the suggested method to a real count series.

Suggested Citation

  • Feilong Lu & Dehui Wang, 2022. "A new estimation for INAR(1) process with Poisson distribution," Computational Statistics, Springer, vol. 37(3), pages 1185-1201, July.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01157-5
    DOI: 10.1007/s00180-021-01157-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01157-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01157-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiwon Kang & Sangyeol Lee, 2009. "Parameter change test for random coefficient integer‐valued autoregressive processes with application to polio data analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 239-258, March.
    2. Zhiwen Zhao & Wei Yu, 2016. "Empirical Likelihood Inference for First-Order Random Coefficient Integer-Valued Autoregressive Processes," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-8, February.
    3. A. Alzaid & M. Al‐Osh, 1988. "First‐Order Integer‐Valued Autoregressive (INAR (1)) Process: Distributional and Regression Properties," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 42(1), pages 53-61, March.
    4. R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, September.
    5. Manik Awale & N. Balakrishna & T. V. Ramanathan, 2019. "Testing the constancy of the thinning parameter in a random coefficient integer autoregressive model," Statistical Papers, Springer, vol. 60(5), pages 1515-1539, October.
    6. Haixiang Zhang & Dehui Wang & Fukang Zhu, 2011. "Empirical likelihood inference for random coefficient INAR(p) process," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 195-203, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manik Awale & N. Balakrishna & T. V. Ramanathan, 2019. "Testing the constancy of the thinning parameter in a random coefficient integer autoregressive model," Statistical Papers, Springer, vol. 60(5), pages 1515-1539, October.
    2. Kai Yang & Han Li & Dehui Wang & Chenhui Zhang, 2021. "Random coefficients integer-valued threshold autoregressive processes driven by logistic regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 533-557, December.
    3. Shengqi Tian & Dehui Wang & Shuai Cui, 2020. "A seasonal geometric INAR process based on negative binomial thinning operator," Statistical Papers, Springer, vol. 61(6), pages 2561-2581, December.
    4. Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.
    5. M. Kachour & J. F. Yao, 2009. "First‐order rounded integer‐valued autoregressive (RINAR(1)) process," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(4), pages 417-448, July.
    6. Christian Weiß, 2015. "A Poisson INAR(1) model with serially dependent innovations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 829-851, October.
    7. Youngmi Lee & Sangyeol Lee, 2019. "CUSUM test for general nonlinear integer-valued GARCH models: comparison study," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1033-1057, October.
    8. Wagner Barreto-Souza, 2015. "Zero-Modified Geometric INAR(1) Process for Modelling Count Time Series with Deflation or Inflation of Zeros," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 839-852, November.
    9. Giulia Carallo & Roberto Casarin & Christian P. Robert, 2020. "Generalized Poisson Difference Autoregressive Processes," Papers 2002.04470, arXiv.org.
    10. José M. R. Murteira & Mário A. G. Augusto, 2017. "Hurdle models of repayment behaviour in personal loan contracts," Empirical Economics, Springer, vol. 53(2), pages 641-667, September.
    11. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    12. repec:tiu:tiutis:6b90fe6f-4de9-4192-9f4d-99ae9220af75 is not listed on IDEAS
    13. Ruijun Bu & Kaddour Hadri & Brendan McCabe, 2006. "Conditional Maximum Likelihood Estimation of Higher-Order Integer-Valued Autoregressive Processes," Working Papers 200619, University of Liverpool, Department of Economics.
    14. Feike C. Drost & Ramon Van Den Akker & Bas J. M. Werker, 2008. "Local asymptotic normality and efficient estimation for INAR(p) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 783-801, September.
    15. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    16. Muhammed Rasheed Irshad & Christophe Chesneau & Veena D’cruz & Naushad Mamode Khan & Radhakumari Maya, 2022. "Bivariate Poisson 2Sum-Lindley Distributions and the Associated BINAR(1) Processes," Mathematics, MDPI, vol. 10(20), pages 1-24, October.
    17. Jiwon Kang & Sangyeol Lee, 2014. "Parameter Change Test for Poisson Autoregressive Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1136-1152, December.
    18. Aleksandar S. Nastić & Petra N. Laketa & Miroslav M. Ristić, 2016. "Random environment integer-valued autoregressive process," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 267-287, March.
    19. Shirozhan, M. & Bakouch, Hassan S. & Mohammadpour, M., 2023. "A flexible INAR(1) time series model with dependent zero-inflated count series and medical contagious cases," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 216-230.
    20. Christian H. Weiß & Martin H.-J. M. Feld & Naushad Mamode Khan & Yuvraj Sunecher, 2019. "INARMA Modeling of Count Time Series," Stats, MDPI, vol. 2(2), pages 1-37, June.
    21. Layth C. Alwan & Christian H. Weiß, 2017. "INAR implementation of newsvendor model for serially dependent demand counts," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1085-1099, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01157-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.