IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v161y2020ics0167715220300225.html
   My bibliography  Save this article

Computing probabilities of integer-valued random variables by recurrence relations

Author

Listed:
  • Baena-Mirabete, S.
  • Puig, P.

Abstract

We derive a set of recurrence relations for the calculation of the probabilities of a large class of integer-valued random variables. We show that the probability mass function can be recursively computed for random variables with a probability generating function satisfying certain functional form.

Suggested Citation

  • Baena-Mirabete, S. & Puig, P., 2020. "Computing probabilities of integer-valued random variables by recurrence relations," Statistics & Probability Letters, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:stapro:v:161:y:2020:i:c:s0167715220300225
    DOI: 10.1016/j.spl.2020.108719
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220300225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108719?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sundt, Bjørn, 1992. "On some Extensions of Panjer's Class of Counting Distributions1," ASTIN Bulletin, Cambridge University Press, vol. 22(1), pages 61-80, May.
    2. Siem Jan Koopman & Rutger Lit & André Lucas, 2017. "Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
    3. Ole E. Barndorff-Nielsen & David G. Pollard & Neil Shephard, 2012. "Integer-valued L�vy processes and low latency financial econometrics," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 587-605, January.
    4. Lu, Yang, 2018. "Exact Likelihood Estimation and Probabilistic Forecasting in Higher-order INAR(p) Models," MPRA Paper 83682, University Library of Munich, Germany.
    5. M. A. Al‐Osh & A. A. Alzaid, 1987. "First‐Order Integer‐Valued Autoregressive (Inar(1)) Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 261-275, May.
    6. Ong, S. H., 1995. "Some stochastic models leading to the convolution of two binomial variables," Statistics & Probability Letters, Elsevier, vol. 22(2), pages 161-166, February.
    7. R. K. Freeland & B. P. M. McCabe, 2004. "Analysis of low count time series data by poisson autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(5), pages 701-722, September.
    8. Furman, Edward, 2007. "On the convolution of the negative binomial random variables," Statistics & Probability Letters, Elsevier, vol. 77(2), pages 169-172, January.
    9. Ken Butler & Michael A. Stephens, 2017. "The Distribution of a Sum of Independent Binomial Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 557-571, June.
    10. Xanthi Pedeli & Anthony C. Davison & Konstantinos Fokianos, 2015. "Likelihood Estimation for the INAR( p ) Model by Saddlepoint Approximation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1229-1238, September.
    11. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aknouche, Abdelhakim & Gouveia, Sonia & Scotto, Manuel, 2023. "Random multiplication versus random sum: auto-regressive-like models with integer-valued random inputs," MPRA Paper 119518, University Library of Munich, Germany, revised 18 Dec 2023.
    2. Zhanyu Chen & Kai Zhang & Hongbiao Zhao, 2022. "A Skellam market model for loan prime rate options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(3), pages 525-551, March.
    3. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    4. Vladim'ir Hol'y & Petra Tomanov'a, 2021. "Modeling Price Clustering in High-Frequency Prices," Papers 2102.12112, arXiv.org, revised Mar 2021.
    5. Feike C. Drost & Ramon Van Den Akker & Bas J. M. Werker, 2008. "Local asymptotic normality and efficient estimation for INAR(p) models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 783-801, September.
    6. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    7. Leopoldo Catania & Roberto Di Mari & Paolo Santucci de Magistris, 2019. "Dynamic discrete mixtures for high frequency prices," Discussion Papers 19/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    8. Shota Gugushvili & Ester Mariucci & Frank van der Meulen, 2020. "Decompounding discrete distributions: A nonparametric Bayesian approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 464-492, June.
    9. Vladim'ir Hol'y, 2022. "An Intraday GARCH Model for Discrete Price Changes and Irregularly Spaced Observations," Papers 2211.12376, arXiv.org, revised May 2024.
    10. Federico Bassetti & Giulia Carallo & Roberto Casarin, 2022. "First-order integer-valued autoregressive processes with Generalized Katz innovations," Papers 2202.02029, arXiv.org.
    11. Mirko Armillotta & Paolo Gorgi, 2023. "Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models," Tinbergen Institute Discussion Papers 23-054/III, Tinbergen Institute.
    12. Xiaofei Hu & Beth Andrews, 2021. "Integer‐valued asymmetric garch modeling," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 737-751, September.
    13. Muhammed Rasheed Irshad & Christophe Chesneau & Veena D’cruz & Naushad Mamode Khan & Radhakumari Maya, 2022. "Bivariate Poisson 2Sum-Lindley Distributions and the Associated BINAR(1) Processes," Mathematics, MDPI, vol. 10(20), pages 1-24, October.
    14. Zhang, Huiming & Liu, Yunxiao & Li, Bo, 2014. "Notes on discrete compound Poisson model with applications to risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 325-336.
    15. Isabel Silva & M. Eduarda Silva & Isabel Pereira & Nélia Silva, 2005. "Replicated INAR(1) Processes," Methodology and Computing in Applied Probability, Springer, vol. 7(4), pages 517-542, December.
    16. Kai Yang & Han Li & Dehui Wang & Chenhui Zhang, 2021. "Random coefficients integer-valued threshold autoregressive processes driven by logistic regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 533-557, December.
    17. Han Li & Zijian Liu & Kai Yang & Xiaogang Dong & Wenshan Wang, 2024. "A pth-order random coefficients mixed binomial autoregressive process with explanatory variables," Computational Statistics, Springer, vol. 39(5), pages 2581-2604, July.
    18. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    19. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    20. Dhaene, Jan & Vandebroek, Martina, 1995. "Recursions for the individual model," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 31-38, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:161:y:2020:i:c:s0167715220300225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.