Robust weighted Gaussian processes
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-020-01011-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Olawale Awe O. & Adedayo Adepoju A., 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 258-293, June.
- Ching-Wai Chiu & Haroon Mumtaz & Gabor Pinter, 2016.
"VAR Models with Non-Gaussian Shocks,"
Discussion Papers
1609, Centre for Macroeconomics (CFM).
- Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pinter, Gabor, 2016. "VAR models with non-Gaussian shocks," LSE Research Online Documents on Economics 86238, London School of Economics and Political Science, LSE Library.
- Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2016. "VAR Models with Non-Gaussian Shocks," CReMFi Discussion Papers 4, CReMFi, School of Economics and Finance, QMUL.
- Justin L. Tobias & Mingliang Li, 2003.
"A finite-sample hierarchical analysis of wage variation across public high schools: evidence from the NLSY and high school and beyond,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(3), pages 315-336.
- Tobias, Justin & Li, Mingliang, 2003. "A Finite Sample Hierarchical Analysis of Wage Variation Across Public High Schools: Evidence from the Nlsy and High School and Beyond," Staff General Research Papers Archive 12015, Iowa State University, Department of Economics.
- Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
- Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
- Kelly Trinh & Bo Zhang & Chenghan Hou, 2025. "Macroeconomic real‐time forecasts of univariate models with flexible error structures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 59-78, January.
- Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
- Ardia, David & Lennart, Hoogerheide & Nienke, Corré, 2011.
"Stock index returns’ density prediction using GARCH models: Frequentist or Bayesian estimation?,"
MPRA Paper
28259, University Library of Munich, Germany.
- Lennart F. Hoogerheide & David Ardia & Nienke Corre, 2011. "Stock Index Returns' Density Prediction using GARCH Models: Frequentist or Bayesian Estimation?," Tinbergen Institute Discussion Papers 11-020/4, Tinbergen Institute.
- Junrong Liu & Robin C. Sickles & E. G. Tsionas, 2017. "Bayesian Treatments for Panel Data Stochastic Frontier Models with Time Varying Heterogeneity," Econometrics, MDPI, vol. 5(3), pages 1-21, July.
- Markku Lanne & Arto Luoma & Jani Luoto, 2012.
"Bayesian Model Selection And Forecasting In Noncausal Autoregressive Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 812-830, August.
- Lanne, Markku & Luoma, Arto & Luoto, Jani, 2009. "Bayesian Model Selection and Forecasting in Noncausal Autoregressive Models," MPRA Paper 23646, University Library of Munich, Germany.
- Miranowski, John A. & Monchuk, Daniel C., 2004. "Spatial Labor Markets and Technology Spillovers - Analysis from the US Midwest," Working Papers 18224, Iowa State University, Department of Economics.
- Haroon Mumtaz & Fulvia Marotta, 2023. "Vulnerability to Climate Change: Evidence from a Dynamic Factor Model," Working Papers 961, Queen Mary University of London, School of Economics and Finance.
- Doris A. Oberdabernig & Stefan Humer & Jesus Crespo Cuaresma, 2018. "Democracy, Geography and Model Uncertainty," Scottish Journal of Political Economy, Scottish Economic Society, vol. 65(2), pages 154-185, May.
- Bin Chen & Jinho Choi & Juan Carlos Escanciano, 2017.
"Testing for fundamental vector moving average representations,"
Quantitative Economics, Econometric Society, vol. 8(1), pages 149-180, March.
- Bin Chen & Jinho Choi & Juan Carlos Escanciano, 2015. "Testing for Fundamental Vector Moving Average Representations," CAEPR Working Papers 2015-022, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Theodore Panagiotidis & Georgios Papapanagiotou, 2024.
"A note on the determinants of NFTs returns,"
Working Paper series
24-07, Rimini Centre for Economic Analysis.
- Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Discussion Paper Series 2024_02, Department of Economics, University of Macedonia, revised Feb 2024.
- Moeltner Klaus & Rosenberger Randall S, 2008. "Predicting Resource Policy Outcomes via Meta-Regression: Data Space, Model Space, and the Quest for 'Optimal Scope'," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 8(1), pages 1-31, August.
- Doppelhofer, G. & Weeks, M., 2005.
"Jointness of Growth Determinants,"
Cambridge Working Papers in Economics
0542, Faculty of Economics, University of Cambridge.
- Gernot Doppelhofer & Melvyn Weeks, 2007. "Jointness of Growth Determinants," CESifo Working Paper Series 1978, CESifo.
- Moeltner, Klaus, 2019. "Bayesian nonlinear meta regression for benefit transfer," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 44-62.
- Fernández, C. & Steel, M.F.J., 1996.
"On Bayesian Inference under Sampling from Scale Mixtures of Normals,"
Discussion Paper
1996-02, Tilburg University, Center for Economic Research.
- Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Inference under Sampling from Scale Mixtures of Normals," Other publications TiSEM 10be2f67-1679-4828-bba6-7, Tilburg University, School of Economics and Management.
- Lanne, Markku & Luoto, Jani, 2008.
"Robustness of the risk-return relationship in the U.S. stock market,"
Finance Research Letters, Elsevier, vol. 5(2), pages 118-127, June.
- Lanne, Markku & Luoto, Jani, 2007. "Robustness of the Risk-Return Relationship in the U.S. Stock Market," MPRA Paper 3879, University Library of Munich, Germany.
More about this item
Keywords
Machine learning; Online learning; Robust regression; Outlying data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:1:d:10.1007_s00180-020-01011-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.