IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v33y2018i2d10.1007_s00180-017-0788-1.html
   My bibliography  Save this article

On the zero-modified Poisson–Shanker regression model and its application to fetal deaths notification data

Author

Listed:
  • Wesley Bertoli

    (Universidade Tecnológica Federal do Paraná
    Universidade de São Paulo, São Carlos)

  • Katiane S. Conceição

    (Universidade de São Paulo)

  • Marinho G. Andrade

    (Universidade de São Paulo)

  • Francisco Louzada

    (Universidade de São Paulo)

Abstract

In this paper, we propose the zero-modified Poisson–Shanker regression model as an alternative to model overdispersed count data exhibiting inflation or deflation of zeros in the presence of covariates. The zero modification has been incorporated using the zero-truncated Poisson–Shanker distribution. The zero-modified Poisson–Shanker distribution has been written as a hurdle model using a simple reparameterization of the probability function which leads to the fact that the proposed model can be fitted without any previous information about the zero modification present in a given dataset. The standard Bayesian procedures have been considered for estimation and inference. A simulation study has been presented to illustrate the performance of the developed methodology. The usefulness of the proposed model has been evaluated using a real dataset on fetal deaths notification data in Bahia State, Brazil. A sensitivity study to detect points which can influence the parameter estimates has been performed using Kullback–Leibler divergence measure. The randomized quantile residuals have been considered for the model validation issue. General comparison of the proposed model with some well-known discrete distributions has been provided.

Suggested Citation

  • Wesley Bertoli & Katiane S. Conceição & Marinho G. Andrade & Francisco Louzada, 2018. "On the zero-modified Poisson–Shanker regression model and its application to fetal deaths notification data," Computational Statistics, Springer, vol. 33(2), pages 807-836, June.
  • Handle: RePEc:spr:compst:v:33:y:2018:i:2:d:10.1007_s00180-017-0788-1
    DOI: 10.1007/s00180-017-0788-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0788-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0788-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allen McDowell, 2003. "From the help desk: hurdle models," Stata Journal, StataCorp LP, vol. 3(2), pages 178-184, June.
    2. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    3. J.L. Bazán & F. Torres‐Avilés & A.K. Suzuki & F. Louzada, 2017. "Power and reversal power links for binary regressions: An application for motor insurance policyholders," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 22-34, January.
    4. Aldo M. Garay & Heleno Bolfarine & Victor H. Lachos & Celso R.B. Cabral, 2015. "Bayesian analysis of censored linear regression models with scale mixtures of normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2694-2714, December.
    5. Hyunsoon Cho & Joseph G. Ibrahim & Debajyoti Sinha & Hongtu Zhu, 2009. "Bayesian Case Influence Diagnostics for Survival Models," Biometrics, The International Biometric Society, vol. 65(1), pages 116-124, March.
    6. Gurmu, Shiferaw & Trivedi, Pravin K, 1996. "Excess Zeros in Count Models for Recreational Trips," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 469-477, October.
    7. Angers, Jean-Francois & Biswas, Atanu, 2003. "A Bayesian analysis of zero-inflated generalized Poisson model," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 37-46, February.
    8. Alok K. Bohara & Randall G. Krieg, 1996. "A Zero-inflated Poisson Model of Migration Frequency," International Regional Science Review, , vol. 19(3), pages 211-222, July.
    9. Dietz, Ekkehart & Bohning, Dankmar, 2000. "On estimation of the Poisson parameter in zero-modified Poisson models," Computational Statistics & Data Analysis, Elsevier, vol. 34(4), pages 441-459, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Martínez-Espiñeira, 2007. "‘Adopt a Hypothetical Pup’: A Count Data Approach to the Valuation of Wildlife," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(2), pages 335-360, June.
    2. Boncinelli, Fabio & Bartolini, Fabio & Casini, Leonardo, 2018. "Structural factors of labour allocation for farm diversification activities," Land Use Policy, Elsevier, vol. 71(C), pages 204-212.
    3. Bilgic, Abdulbaki & Florkowski, Wojciech J., 2003. "Truncated-At-Zero Count Data Models With Partial Observability: An Application To The Freshwater Fishing Demand In The Southeastern U.S," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35185, Southern Agricultural Economics Association.
    4. Gurmu, Shiferaw, 1998. "Generalized hurdle count data regression models," Economics Letters, Elsevier, vol. 58(3), pages 263-268, March.
    5. Stefano Mainardi, 2003. "Testing convergence in life expectancies: count regression models on panel data," Prague Economic Papers, Prague University of Economics and Business, vol. 2003(4), pages 350-370.
    6. J. M. C. Santos Silva, 2001. "A score test for non-nested hypotheses with applications to discrete data models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(5), pages 577-597.
    7. Jiang, Yuan & House, Lisa & Tejera, Christian & Percival, Susan S., 2015. "Consumption of Mushrooms: A double-hurdle Approach," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196902, Southern Agricultural Economics Association.
    8. Cristian Roner & Claudia Di Caterina & Davide Ferrari, 2021. "Exponential Tilting for Zero-inflated Interval Regression with Applications to Cyber Security Survey Data," BEMPS - Bozen Economics & Management Paper Series BEMPS85, Faculty of Economics and Management at the Free University of Bozen.
    9. Bilgic, Abdulbaki & Florkowski, Wojciech J., 2003. "Explaning Anglers Behavior Using Count Data Models With Endogenous Switching Regime," 2003 Annual meeting, July 27-30, Montreal, Canada 22087, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Isabel Mendes & Isabel Proença, 2009. "Measuring the Social Recreation Per-Day Net Benefit of Wildlife Amenities of a National Park: A Count-Data Travel Cost Approach," Working Papers Department of Economics 2009/35, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    11. Sisira Sarma & Wayne Simpson, 2006. "A microeconometric analysis of Canadian health care utilization," Health Economics, John Wiley & Sons, Ltd., vol. 15(3), pages 219-239, March.
    12. Seraina Rüegger & Heidrun Bohnet, 2018. "The Ethnicity of Refugees (ER): A new dataset for understanding flight patterns1," Conflict Management and Peace Science, Peace Science Society (International), vol. 35(1), pages 65-88, January.
    13. Biswas, Atanu & Jha, Jayant & Dutta, Somak, 2016. "Modelling circular random variables with a spike at zero," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 194-201.
    14. Subhayu Bandyopadhyay & Cletus C. Coughlin, 2014. "Determinants of trade margins: insights using state export data," Working Papers 2014-6, Federal Reserve Bank of St. Louis.
    15. Martijn Burger & Frank van Oort & Gert-Jan Linders, 2009. "On the Specification of the Gravity Model of Trade: Zeros, Excess Zeros and Zero-inflated Estimation," Spatial Economic Analysis, Taylor & Francis Journals, vol. 4(2), pages 167-190.
    16. Austin Nichols, 2010. "Regression for nonnegative skewed dependent variables," BOS10 Stata Conference 2, Stata Users Group.
    17. Meisner, Craig & Wang, Hua & Laplante, Benoit, 2006. "Welfare measurement bias in household and on-site surveying of water-based recreation : an application to Lake Sevan, Armenia," Policy Research Working Paper Series 3932, The World Bank.
    18. Silvia Ferrini & Carlo Fezzi, 2012. "Generalized Additive Models for Nonmarket Valuation via Revealed or Stated Preference Methods," Land Economics, University of Wisconsin Press, vol. 88(4), pages 782-802.
    19. Hoong Chor Chin & Mohammed Abdul Quddus, 2003. "Modeling Count Data with Excess Zeroes," Sociological Methods & Research, , vol. 32(1), pages 90-116, August.
    20. Michael D. Creel & Montserrat Farell, 2001. "Likelihood-Based Approaches to Modeling Demand for Medical Care," UFAE and IAE Working Papers 498.01, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:33:y:2018:i:2:d:10.1007_s00180-017-0788-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.