IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v29y2014i3p529-546.html
   My bibliography  Save this article

Sensitivity analysis for inference with partially identifiable covariance matrices

Author

Listed:
  • Max G’Sell
  • Shai Shen-Orr
  • Robert Tibshirani

Abstract

In some multivariate problems with missing data, pairs of variables exist that are never observed together. For example, some modern biological tools can produce data of this form. As a result of this structure, the covariance matrix is only partially identifiable, and point estimation requires that identifying assumptions be made. These assumptions can introduce an unknown and potentially large bias into the inference. This paper presents a method based on semidefinite programming for automatically quantifying this potential bias by computing the range of possible equal-likelihood inferred values for convex functions of the covariance matrix. We focus on the bias of missing value imputation via conditional expectation and show that our method can give an accurate assessment of the true error in cases where estimates based on sampling uncertainty alone are overly optimistic. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Max G’Sell & Shai Shen-Orr & Robert Tibshirani, 2014. "Sensitivity analysis for inference with partially identifiable covariance matrices," Computational Statistics, Springer, vol. 29(3), pages 529-546, June.
  • Handle: RePEc:spr:compst:v:29:y:2014:i:3:p:529-546
    DOI: 10.1007/s00180-013-0451-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-013-0451-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-013-0451-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rubin, Donald B, 1986. "Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 87-94, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nickolay Trendafilov & Martin Kleinsteuber & Hui Zou, 2014. "Sparse matrices in data analysis," Computational Statistics, Springer, vol. 29(3), pages 403-405, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. François Gardes, 2021. "On the value of time and human life," Documents de travail du Centre d'Economie de la Sorbonne 21023, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. François Gardes, 2021. "A Solution to the Estimation of an Enlarged GDP Including Domestic Production: An Estimation on Micro Data," Post-Print halshs-03325362, HAL.
    3. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    4. Peter ven de Ven & Anne Harrison & Barbara Fraumeni & Dennis Fixler & David Johnson & Andrew Craig & Kevin Furlong, 2017. "A Consistent Data Series to Evaluate Growth and Inequality in the National Accounts Note: The views expressed in this research, including those related to statistical, methodological, technical, or op," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63, pages 437-459, December.
    5. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    6. Mattingly, Daniel & Incerti, Trevor & Ju, Changwook & Moreshead, Colin & Tanaka, Seiki & Yamagishi, Hikaru, 2022. "Chinese State Media Persuades a Global Audience That the “China Model” is Superior: Evidence From A 19-Country Experiment," OSF Preprints 5cafd_v1, Center for Open Science.
    7. Chenyang Gu & Roee Gutman, 2017. "Combining item response theory with multiple imputation to equate health assessment questionnaires," Biometrics, The International Biometric Society, vol. 73(3), pages 990-998, September.
    8. Eugenio Zucchelli & Andrew M Jones & Nigel Rice, 2012. "The evaluation of health policies through dynamic microsimulation methods," International Journal of Microsimulation, International Microsimulation Association, vol. 5(1), pages 2-20.
    9. Michael S. Rendall & Bonnie Ghosh-Dastidar & Margaret M. Weden & Zafar Nazarov, 2011. "Multiple Imputation for Combined-Survey Estimation With Incomplete Regressors In One But Not Both Surveys," Working Papers WR-887-1, RAND Corporation.
    10. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.
    11. Rasner, Anika & Frick, Joachim R. & Grabka, Markus M., 2013. "Statistical Matching of Administrative and Survey Data: An Application to Wealth Inequality Analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 42(2), pages 192-224.
    12. Anil Alpman, 2015. "Implementing Rubin's Alternative Multiple Imputation Method for Statistical Matching in Stata," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01159191, HAL.
    13. Rässler, Susanne & Schnell, Rainer, 2004. "Multiple imputation for unit-nonresponse versus weighting including a comparison with a nonresponse follow-up study," Discussion Papers 65/2004, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    14. repec:dgr:rugsom:96b17 is not listed on IDEAS
    15. Arif Mamun & Ankita Patnaik & Michael Levere & Gina Livermore & Todd Honeycutt & Jacqueline Kauff & Karen Katz & AnnaMaria McCutcheon & Joseph Mastrianni & Brittney Gionfriddo, "undated". "Promoting Readiness of Minors in Supplemental Security Income (PROMISE): Technical Appendix to the Interim Services and Impact Report," Mathematica Policy Research Reports 24c37444a21d4046abb21395a, Mathematica Policy Research.
    16. Wu, Meng-Wen & Shen, Chung-Hua, 2013. "Corporate social responsibility in the banking industry: Motives and financial performance," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3529-3547.
    17. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    18. Andrew Briggs & Taane Clark & Jane Wolstenholme & Philip Clarke, 2003. "Missing.... presumed at random: cost‐analysis of incomplete data," Health Economics, John Wiley & Sons, Ltd., vol. 12(5), pages 377-392, May.
    19. Okay Gunes, 2017. "Analysis of Households' Decision Using Full Demand Elasticity Estimates: an Estimation on Turkish Data," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01491970, HAL.
    20. Anil Alpman & François Gardes, 2015. "Welfare Analysis of the Allocation of Time During the Great Recession," Documents de travail du Centre d'Economie de la Sorbonne 15012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Mar 2016.
    21. Gessendorfer Jonathan & Beste Jonas & Drechsler Jörg & Sakshaug Joseph W., 2018. "Statistical Matching as a Supplement to Record Linkage: A Valuable Method to Tackle Nonconsent Bias?," Journal of Official Statistics, Sciendo, vol. 34(4), pages 909-933, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:29:y:2014:i:3:p:529-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.