IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v28y2013i2p701-734.html
   My bibliography  Save this article

Estimating critical values for testing the i.i.d. in standardized residuals from GARCH models in finite samples

Author

Listed:
  • Jorge Pérez-Rodríguez

  • Julián Andrada-Félix

Abstract

Taking into account that the BDS test—which is used as a misspecification test applied to standardized residuals from the GARCH(1,1) model—is characterized by size distortion and departure from normality in finite samples, this paper obtains the critical values for the finite sample distribution of the BDS test. We focus on bootstrap simulation to avoid the sampling uncertainty of parameter estimation and make use of estimated response surface regressions (RSR) derived from the experimental results. We consider an extensive grid of models to obtain critical values with the results of the bootstrap experiments. The RSR used to estimate them is an artificial neural network (ANN) model, instead of the traditional linear regression models. Specifically, we estimate critical values by using a bootstrap aggregated neural network (BANN) and by employing functions of the sample size and parameters used in the experiment as the embedding dimension and proximity parameters in the BDS statistic, GARCH parameters and even the q-quantiles of the BDS distributions. The main results confirm that the sample size and BDS parameters play a role in size distortion. Finally, an empirical application to three price indexes is performed, to highlight the differences between decisions made using the asymptotic or our predicted critical values for the BDS test in finite samples. Copyright Springer-Verlag 2013

Suggested Citation

  • Jorge Pérez-Rodríguez & Julián Andrada-Félix, 2013. "Estimating critical values for testing the i.i.d. in standardized residuals from GARCH models in finite samples," Computational Statistics, Springer, vol. 28(2), pages 701-734, April.
  • Handle: RePEc:spr:compst:v:28:y:2013:i:2:p:701-734
    DOI: 10.1007/s00180-012-0325-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-012-0325-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-012-0325-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Guglielmo Maria Caporale, 2005. "The BDS Test as a Test for the Adequacy of a GARCH(1,1) Specification: A Monte Carlo Study," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 282-309.
    2. Sephton, Peter S., 1995. "Response surface estimates of the KPSS stationarity test," Economics Letters, Elsevier, vol. 47(3-4), pages 255-261, March.
    3. Chappell, David & Padmore, Joanne & Ellis, Catherine, 1996. "A Note on the Distribution of BDS Statistics for a Real Exchange Rate Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(3), pages 561-565, August.
    4. MacKinnon, James G., 1992. "Approximate Asymptotic Distribution Functions for Unit Roots and Cointegration Tests," Queen's Economics Department Working Papers 273255, Queen's University - Department of Economics.
    5. Brooks, Chris & Heravi, Saeed M, 1999. "The Effect of (Mis-Specified) GARCH Filters on the Finite Sample Distribution of the BDS Test," Computational Economics, Springer;Society for Computational Economics, vol. 13(2), pages 147-162, April.
    6. Engle, R. F. & Granger, C. W. J. (ed.), 1991. "Long-Run Economic Relationships: Readings in Cointegration," OUP Catalogue, Oxford University Press, number 9780198283393.
    7. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    8. Brooks, Chris & Henry, Olan T., 2000. "Can portmanteau nonlinearity tests serve as general mis-specification tests?: Evidence from symmetric and asymmetric GARCH models," Economics Letters, Elsevier, vol. 67(3), pages 245-251, June.
    9. Hsieh, David A, 1989. "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates," The Journal of Business, University of Chicago Press, vol. 62(3), pages 339-368, July.
    10. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    11. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    12. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    13. MacKinnon, James G., 1995. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Queen's Economics Department Working Papers 273322, Queen's University - Department of Economics.
    14. Hendry, David F., 1984. "Monte carlo experimentation in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 16, pages 937-976, Elsevier.
    15. Hsieh, David A., 1993. "Implications of Nonlinear Dynamics for Financial Risk Management," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(1), pages 41-64, March.
    16. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    17. MacKinnon, James G, 1994. "Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 167-176, April.
    18. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(1), pages 17-39, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neil R. Ericsson & James G. MacKinnon, 2002. "Distributions of error correction tests for cointegration," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 285-318, June.
    2. Mauro Costantini & Claudio Lupi, 2013. "A Simple Panel-CADF Test for Unit Roots," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 276-296, April.
    3. Sebastian Kripfganz & Daniel C. Schneider, 2020. "Response Surface Regressions for Critical Value Bounds and Approximate p‐values in Equilibrium Correction Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1456-1481, December.
    4. Jesús Otero & Jeremy Smith, 2013. "Response Surface Estimates of the Cross-Sectionally Augmented IPS Tests for Panel Unit Roots," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 1-9, January.
    5. Evzen Kocenda & Lubos Briatka, 2005. "Optimal Range for the iid Test Based on Integration Across the Correlation Integral," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 265-296.
    6. Harvey, David I. & van Dijk, Dick, 2006. "Sample size, lag order and critical values of seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2734-2751, June.
    7. Peter Sephton, 2008. "Critical values of the augmented fractional Dickey–Fuller test," Empirical Economics, Springer, vol. 35(3), pages 437-450, November.
    8. Koji Nakamura & Yumi Saita, 2007. "Land Prices and Fundamentals," Bank of Japan Working Paper Series 07-E-8, Bank of Japan.
    9. Lawford, Steve & Stamatogiannis, Michalis P., 2009. "The finite-sample effects of VAR dimensions on OLS bias, OLS variance, and minimum MSE estimators," Journal of Econometrics, Elsevier, vol. 148(2), pages 124-130, February.
    10. Yi-Ting Chen & Chung-Ming Kuan, 2002. "Time irreversibility and EGARCH effects in US stock index returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 565-578.
    11. repec:jss:jstsof:32:i02 is not listed on IDEAS
    12. Fernandes, Marcelo & Preumont, Pierre-Yves, 2012. "The Finite-Sample Size of the BDS Test for GARCH Standardized Residuals," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 32(2), April.
    13. Peter S. Sephton, 2022. "Finite Sample Lag Adjusted Critical Values of the ADF-GLS Test," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 177-183, January.
    14. Jesús Otero & Jeremy Smith, 2012. "Response surface models for the Leybourne unit root tests and lag order dependence," Computational Statistics, Springer, vol. 27(3), pages 473-486, September.
    15. Prabheesh, K.P. & Anglingkusumo, Reza & Juhro, Solikin M., 2021. "The dynamics of global financial cycle and domestic economic cycles: Evidence from India and Indonesia," Economic Modelling, Elsevier, vol. 94(C), pages 831-842.
    16. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    17. Davidson, Russell & Trokić, Mirza, 2020. "The fast iterated bootstrap," Journal of Econometrics, Elsevier, vol. 218(2), pages 451-475.
    18. Tomás Barrio Castro & Andrii Bodnar & Andreu Sansó, 2017. "Numerical distribution functions for seasonal unit root tests with OLS and GLS detrending," Computational Statistics, Springer, vol. 32(4), pages 1533-1568, December.
    19. Hanck, Christoph, 2006. "For Which Countries did PPP hold? A Multiple Testing Approach," Technical Reports 2006,47, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    20. Bohl, Martin T. & Siklos, Pierre L. & Stefan, Martin & Wellenreuther, Claudia, 2020. "Price discovery in agricultural commodity markets: Do speculators contribute?," Journal of Commodity Markets, Elsevier, vol. 18(C).
    21. Sephton, Peter S., 1995. "Response surface estimates of the KPSS stationarity test," Economics Letters, Elsevier, vol. 47(3-4), pages 255-261, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:28:y:2013:i:2:p:701-734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.