IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i5d10.1007_s10584-023-03538-9.html
   My bibliography  Save this article

Reconstruction and characterization of droughts and floods in the Hanjiang River Basin, China, 1426–2017

Author

Listed:
  • Xiaodan Zhang

    (China University of Geosciences
    Tokyo Metropolitan, University)

  • Guoyu Ren

    (China University of Geosciences
    National Climate Center)

  • He Bing

    (Wuhan University)

  • Takehiko Mikami

    (Tokyo Metropolitan, University)

  • Jun Matsumoto

    (Tokyo Metropolitan, University)

  • Panfeng Zhang

    (Jilin Normal University)

  • Guowei Yang

    (China University of Geosciences
    National Climate Center)

Abstract

Based on the records of drought and flood in Chinese historical documents and precipitation data during the instrumental period, and by using the five-grade classification method, this study reconstructs the drought and flood grades in the Hanjiang River Basin from 1426–2017 and analyzes their spatial and temporal variation characteristics. The results show that, on the centennial scale, drought and flood variation in the basin exhibited two dry periods (early fifteenth century to early sixteenth century, early twentieth century to the present) and one four-century long wet period (early sixteenth to early twentieth centuries), with multi-decadal drought and flood fluctuations within each period. Meanwhile, the variation shows some regional differences. For example, droughts and floods both occurred at high rates in the whole river basin during the twentieth century, with the increase in droughts relatively more remarkable in the upper reaches and the increase in floods more notable in the middle and lower reaches; throughout the study period, the drought and flood variability was larger in the upper reaches, but the drought and flood frequency was higher in the middle and lower reaches. In addition, there are a few quasi-cycles of the drought and flood variability in the middle and lower reaches, which include the quasi-cycles of 2–8 years, 10–30 years, 50 years, and 80–100 years, respectively. The upper reaches are slightly different, which have the quasi-cycles of 3–5 years, 10–30 years, and 70–80 years, respectively.

Suggested Citation

  • Xiaodan Zhang & Guoyu Ren & He Bing & Takehiko Mikami & Jun Matsumoto & Panfeng Zhang & Guowei Yang, 2023. "Reconstruction and characterization of droughts and floods in the Hanjiang River Basin, China, 1426–2017," Climatic Change, Springer, vol. 176(5), pages 1-21, May.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:5:d:10.1007_s10584-023-03538-9
    DOI: 10.1007/s10584-023-03538-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03538-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03538-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weihong Qian & Xiaolong Shan & Deliang Chen & Congwen Zhu & Yafen Zhu, 2012. "Droughts near the northern fringe of the East Asian summer monsoon in China during 1470–2003," Climatic Change, Springer, vol. 110(1), pages 373-383, January.
    2. Wenquan Gu & Dongguo Shao & Yufang Jiang, 2012. "Risk Evaluation of Water Shortage in Source Area of Middle Route Project for South-to-North Water Transfer in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3479-3493, September.
    3. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    2. Penglong Wang & Yao Wei & Fanglei Zhong & Xiaoyu Song & Bao Wang & Qinhua Wang, 2022. "Evaluation of Agricultural Water Resources Carrying Capacity and Its Influencing Factors: A Case Study of Townships in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(5), pages 1-24, May.
    3. Jing Tian & Dedi Liu & Shenglian Guo & Zhengke Pan & Xingjun Hong, 2019. "Impacts of Inter-Basin Water Transfer Projects on Optimal Water Resources Allocation in the Hanjiang River Basin, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    4. Courtney M. Regan & Jeffery D. Connor & Md Sayed Iftekhar, 2023. "An economic assessment of options for operating within plantation forestry water entitlements and tightening cap and trade policy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 303-322, April.
    5. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    6. Philippe A. Ker Rault & Phoebe Koundouri & Ebun Akinsete & Ralf Ludwig & Verena Huber-Garcia & Stella Tsani & Vicenc Acuna & Eleni Kalogianni & Joke Luttik & Kasper Kok & Nikolaos Skoulikidis & Jochen, 2019. "Down scaling of climate change scenarii to river basin level: A transdisciplinary methodology applied to Evrotas river basin, Greece," DEOS Working Papers 1913, Athens University of Economics and Business.
    7. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    8. María Luisa de Lázaro Torres & Pilar Borderías Uribeondo & Francisco José Morales Yago, 2020. "Citizen and Educational Initiatives to Support Sustainable Development Goal 6: Clean Water and Sanitation for All," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    9. Vimal Mishra & Rohini Kumar & Harsh L. Shah & Luis Samaniego & S. Eisner & Tao Yang, 2017. "Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change," Climatic Change, Springer, vol. 141(3), pages 451-465, April.
    10. Temnani, Abdelmalek & Berríos, Pablo & Zapata-García, Susana & Pérez-Pastor, Alejandro, 2023. "Deficit irrigation strategies of flat peach trees under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 287(C).
    11. Shawei He & Keith Hipel & D. Kilgour, 2014. "Water Diversion Conflicts in China: A Hierarchical Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1823-1837, May.
    12. Ignacio Cazcarro & Carlos A. López‐Morales & Faye Duchin, 2019. "The global economic costs of substituting dietary protein from fish with meat, grains and legumes, and dairy," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1159-1171, October.
    13. Jiangmei Xiong & Yulin Hswen & John A. Naslund, 2020. "Digital Surveillance for Monitoring Environmental Health Threats: A Case Study Capturing Public Opinion from Twitter about the 2019 Chennai Water Crisis," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
    14. Karolina Szalkowska & Monika Zubrowska-Sudol, 2023. "Opportunities for Water Reuse Implementation in Metropolitan Areas in a Complex Approach with an LCA Analysis, Taking Warsaw, Poland as an Example," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    15. Qian Zhang & Xiujuan Liang & Zhang Fang & Tao Jiang & Yubo Wang & Lei Wang, 2016. "Urban water resources allocation and shortage risk mapping with support vector machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1209-1228, March.
    16. Wijesiri, Buddhi & Hettiarachchi, Akash, 2021. "How gender disparities in urban and rural areas influence access to safe drinking water," Utilities Policy, Elsevier, vol. 68(C).
    17. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    18. Aymen Sawassi & Roula Khadra, 2021. "Bibliometric Network Analysis of “Water Systems’ Adaptation to Climate Change Uncertainties”: Concepts, Approaches, Gaps, and Opportunities," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    19. Fabio Sporchia & Nicoletta Patrizi & Federico Maria Pulselli, 2023. "Date Fruit Production and Consumption: A Perspective on Global Trends and Drivers from a Multidimensional Footprint Assessment," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    20. Claudio Arena & Marcella Cannarozzo & Mario Mazzola, 2014. "Screening Investments to Reduce the Risk of Hydrologic Failures in the Headwork System Supplying Apulia (Italy) – Role of Economic Evaluation and Operation Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1251-1275, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:5:d:10.1007_s10584-023-03538-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.