IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i14p5077-d384396.html
   My bibliography  Save this article

Digital Surveillance for Monitoring Environmental Health Threats: A Case Study Capturing Public Opinion from Twitter about the 2019 Chennai Water Crisis

Author

Listed:
  • Jiangmei Xiong

    (Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA)

  • Yulin Hswen

    (Computational Epidemiology Lab, Harvard Medical School, Boston, MA 02215, USA
    Innovation Program, Boston Children’s Hospital, Boston, MA 02215, USA
    Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
    Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94158, USA)

  • John A. Naslund

    (Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA)

Abstract

Globally, water scarcity has become a common challenge across many regions. Digital surveillance holds promise for monitoring environmental threats to population health due to severe drought. The 2019 Chennai water crisis in India resulted in severe disruptions to social order and daily life, with local residents suffering due to water shortages. This case study explored public opinion captured through the Twitter social media platform, and whether this information could help local governments with emergency response. Sentiment analysis and topic modeling were used to explore public opinion through Twitter during the 2019 Chennai water crisis. The latent Dirichlet allocation (LDA) method identified topics that were most frequently discussed. A naïve Tweet classification method was built, and Twitter posts (called tweets) were allocated to identified topics. Topics were ranked, and corresponding emotions were calculated. A cross-correlation was performed to examine the relationship between online posts about the water crisis and actual rainfall, determined by precipitation levels. During the Chennai water crisis, Twitter users posted content that appeared to show anxiety about the impact of the drought, and also expressed concerns about the government response. Twitter users also mentioned causes for the drought and potential sustainable solutions, which appeared to be mainly positive in tone. Discussion on Twitter can reflect popular public opinion related to emerging environmental health threats. Twitter posts appear viable for informing crisis management as real-time data can be collected and analyzed. Governments and public health officials should adjust their policies and public communication by leveraging online data sources, which could inform disaster prevention measures.

Suggested Citation

  • Jiangmei Xiong & Yulin Hswen & John A. Naslund, 2020. "Digital Surveillance for Monitoring Environmental Health Threats: A Case Study Capturing Public Opinion from Twitter about the 2019 Chennai Water Crisis," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:5077-:d:384396
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/14/5077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/14/5077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jon Barnett & Sarah Rogers & Michael Webber & Brian Finlayson & Mark Wang, 2015. "Sustainability: Transfer project cannot meet China's water needs," Nature, Nature, vol. 527(7578), pages 295-297, November.
    2. Nigel W. Arnell, 2016. "The global-scale impacts of climate change: the QUEST-GSI project," Climatic Change, Springer, vol. 134(3), pages 343-352, February.
    3. Lei Zou & Nina S. N. Lam & Heng Cai & Yi Qiang, 2018. "Mining Twitter Data for Improved Understanding of Disaster Resilience," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 108(5), pages 1422-1441, September.
    4. Matthew R. Sisco & Valentina Bosetti & Elke U. Weber, 2017. "When do extreme weather events generate attention to climate change?," Climatic Change, Springer, vol. 143(1), pages 227-241, July.
    5. Nigel Arnell, 2016. "The global-scale impacts of climate change: the QUEST-GSI project," Climatic Change, Springer, vol. 134(3), pages 343-352, February.
    6. Nigel Arnell & Simon Gosling, 2016. "The impacts of climate change on river flood risk at the global scale," Climatic Change, Springer, vol. 134(3), pages 387-401, February.
    7. Sungyoon Kim & Wanyun Shao & Jonghun Kam, 2019. "Spatiotemporal patterns of US drought awareness," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.
    8. Oliver Gruebner & Sarah R. Lowe & Martin Sykora & Ketan Shankardass & SV Subramanian & Sandro Galea, 2018. "Spatio-Temporal Distribution of Negative Emotions in New York City After a Natural Disaster as Seen in Social Media," IJERPH, MDPI, vol. 15(10), pages 1-12, October.
    9. Kathryn C. Finch & Kassandra R. Snook & Carmen H. Duke & King-Wa Fu & Zion Tsz Ho Tse & Atin Adhikari & Isaac Chun-Hai Fung, 2016. "Public health implications of social media use during natural disasters, environmental disasters, and other environmental concerns," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 729-760, August.
    10. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Yu & Feiqiang Liu & Long Xiao & Zitao Liu & Xiaomin Yang, 2021. "Real-Time Environment Monitoring Using a Lightweight Image Super-Resolution Network," IJERPH, MDPI, vol. 18(11), pages 1-16, May.
    2. Gwanggil Jeon & Abdellah Chehri, 2021. "Computing Techniques for Environmental Research and Public Health," IJERPH, MDPI, vol. 18(18), pages 1-4, September.
    3. Ruheng Yin & Rui Tian & Jing Wu & Feng Gan, 2022. "Exploring the Factors Associated with Mental Health Attitude in China: A Structural Topic Modeling Approach," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    4. Turgut Acikara & Bo Xia & Tan Yigitcanlar & Carol Hon, 2023. "Contribution of Social Media Analytics to Disaster Response Effectiveness: A Systematic Review of the Literature," Sustainability, MDPI, vol. 15(11), pages 1-50, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wijesiri, Buddhi & Hettiarachchi, Akash, 2021. "How gender disparities in urban and rural areas influence access to safe drinking water," Utilities Policy, Elsevier, vol. 68(C).
    2. Sudheer Padikkal & K. S. Sumam & N. Sajikumar, 2018. "Sustainability indicators of water sharing compacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2027-2042, October.
    3. Rachel Warren & Oliver Andrews & Sally Brown & Felipe J. Colón-González & Nicole Forstenhäusler & David E. H. J. Gernaat & P. Goodwin & Ian Harris & Yi He & Chris Hope & Desmond Manful & Timothy J. Os, 2022. "Quantifying risks avoided by limiting global warming to 1.5 or 2 °C above pre-industrial levels," Climatic Change, Springer, vol. 172(3), pages 1-16, June.
    4. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    5. Arathy Nair Geetha Raveendran Nair & Shamla Dilama Shamsudeen & Meera Geetha Mohan & Adarsh Sankaran, 2023. "Basin-Scale Streamflow Projections for Greater Pamba River Basin, India Integrating GCM Ensemble Modelling and Flow Accumulation-Weighted LULC Overlay in Deep Learning Environment," Sustainability, MDPI, vol. 15(19), pages 1-27, September.
    6. Maria Fitzner & Anna Fricke & Monika Schreiner & Susanne Baldermann, 2021. "Utilization of Regional Natural Brines for the Indoor Cultivation of Salicornia europaea," Sustainability, MDPI, vol. 13(21), pages 1-12, November.
    7. Antonio A. Pinto & Susana Fischer & Rosemarie Wilckens & Luis Bustamante & Marisol T. Berti, 2021. "Production Efficiency and Total Protein Yield in Quinoa Grown under Water Stress," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    8. Vimal Mishra & Rohini Kumar & Harsh L. Shah & Luis Samaniego & S. Eisner & Tao Yang, 2017. "Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change," Climatic Change, Springer, vol. 141(3), pages 451-465, April.
    9. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    10. Shi Shen & Ke Shi & Junwang Huang & Changxiu Cheng & Min Zhao, 2023. "Global online social response to a natural disaster and its influencing factors: a case study of Typhoon Haiyan," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-15, December.
    11. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    12. Ning Xiang & Limao Wang & Shuai Zhong & Chen Zheng & Bo Wang & Qiushi Qu, 2021. "How Does the World View China’s Carbon Policy? A Sentiment Analysis on Twitter Data," Energies, MDPI, vol. 14(22), pages 1-17, November.
    13. Becken, Susanne & Stantic, Bela & Chen, Jinyan & Connolly, Rod M., 2022. "Twitter conversations reveal issue salience of aviation in the broader context of climate change," Journal of Air Transport Management, Elsevier, vol. 98(C).
    14. Philip Antwi-Agyei & Frank Baffour-Ata & Sarah Koomson & Nana Kwame Kyeretwie & Nana Barimah Nti & Afia Oforiwaa Owusu & Fukaiha Abdul Razak, 2023. "Drivers and coping mechanisms for floods: experiences of residents in urban Kumasi, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2477-2500, March.
    15. Penglong Wang & Yao Wei & Fanglei Zhong & Xiaoyu Song & Bao Wang & Qinhua Wang, 2022. "Evaluation of Agricultural Water Resources Carrying Capacity and Its Influencing Factors: A Case Study of Townships in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(5), pages 1-24, May.
    16. Bing-Chen Jhong & Jung Huang & Ching-Pin Tung, 2019. "Spatial Assessment of Climate Risk for Investigating Climate Adaptation Strategies by Evaluating Spatial-Temporal Variability of Extreme Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3377-3400, August.
    17. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.
    18. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Dajun Dai & Ruixue Wang, 2020. "Space-Time Surveillance of Negative Emotions after Consecutive Terrorist Attacks in London," IJERPH, MDPI, vol. 17(11), pages 1-15, June.
    20. Yusuke Toyoda, 2021. "Survey paper: achievements and perspectives of community resilience approaches to societal systems," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 705-756, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:5077-:d:384396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.