IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14148-d1246925.html
   My bibliography  Save this article

Basin-Scale Streamflow Projections for Greater Pamba River Basin, India Integrating GCM Ensemble Modelling and Flow Accumulation-Weighted LULC Overlay in Deep Learning Environment

Author

Listed:
  • Arathy Nair Geetha Raveendran Nair

    (Thangal Kunju Musaliar College of Engineering, Kollam 691005, Kerala, India
    Department of Civil Engineeing, Thangal Kunju Musaliar College of Engineering, APJ Abdul Kalam Technological University, Kollam 695016, Kerala, India)

  • Shamla Dilama Shamsudeen

    (Thangal Kunju Musaliar College of Engineering, Kollam 691005, Kerala, India
    Department of Civil Engineeing, Thangal Kunju Musaliar College of Engineering, APJ Abdul Kalam Technological University, Kollam 695016, Kerala, India)

  • Meera Geetha Mohan

    (Thangal Kunju Musaliar College of Engineering, Kollam 691005, Kerala, India
    Department of Civil Engineeing, Thangal Kunju Musaliar College of Engineering, APJ Abdul Kalam Technological University, Kollam 695016, Kerala, India)

  • Adarsh Sankaran

    (Thangal Kunju Musaliar College of Engineering, Kollam 691005, Kerala, India
    Department of Civil Engineeing, Thangal Kunju Musaliar College of Engineering, APJ Abdul Kalam Technological University, Kollam 695016, Kerala, India)

Abstract

Accurate prediction of future streamflow in flood-prone regions is crucial for effective flood management and disaster mitigation. This study presents an innovative approach for streamflow projections in deep learning (DL) environment by integrating the quantitative Land-Use Land-Cover (LULC) overlaid with flow accumulation values and the various Global Climate Model (GCM) simulated data. Firstly, the Long Short Term Memory (LSTM) model was developed for the streamflow prediction of Greater Pamba River Basin (GPRB) in Kerala, India for 1985 to 2015 period, considering the climatic inputs. Then, the flow accumulation-weighted LULC integration was considered in modelling, which substantially improves the accuracy of streamflow predictions including the extremes of all the three stations, as the model accounts for the geographical variety of land cover types towards the streamflow at the sub-basin outlets. Subsequently, Reliability Ensemble Averaging (REA) technique was used to create an ensemble of three candidate GCM products to illustrate the spectrum of uncertainty associated with climate projections. Future LULC changes are accounted in regional scale based on the sub-basin approach by means of Cellular-Automata Markov Model and used for integrating with the climatic indices. The basin-scale streamflow projection is done under three climate scenarios of SSP126, SSP245 and SSP585 respectively for lowest, moderate and highest emission conditions. This work is a novel approach of integrating quantified LULC with flow accumulation and other climatic inputs in a DL environment against the conventional techniques of hydrological modelling. The DL model can adapt and account for shifting hydrological responses induced by changes in climatic and LULC inputs. The integration of flow accumulation with changes in LULC was successful in capturing the flow dynamics in long-term. It also identifies regions that are more likely to experience increased flooding in the near future under changing climate scenarios and supports decision-making for sustainable water management of the Greater Pamba Basin which was the worst affected region in Kerala during the mega floods of 2018.

Suggested Citation

  • Arathy Nair Geetha Raveendran Nair & Shamla Dilama Shamsudeen & Meera Geetha Mohan & Adarsh Sankaran, 2023. "Basin-Scale Streamflow Projections for Greater Pamba River Basin, India Integrating GCM Ensemble Modelling and Flow Accumulation-Weighted LULC Overlay in Deep Learning Environment," Sustainability, MDPI, vol. 15(19), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14148-:d:1246925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14148/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14148/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nigel W. Arnell, 2016. "The global-scale impacts of climate change: the QUEST-GSI project," Climatic Change, Springer, vol. 134(3), pages 343-352, February.
    2. Nigel Arnell, 2016. "The global-scale impacts of climate change: the QUEST-GSI project," Climatic Change, Springer, vol. 134(3), pages 343-352, February.
    3. Nigel Arnell & Simon Gosling, 2016. "The impacts of climate change on river flood risk at the global scale," Climatic Change, Springer, vol. 134(3), pages 387-401, February.
    4. Zaheer Abbas & Guang Yang & Yuanjun Zhong & Yaolong Zhao, 2021. "Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN Approach: A Case Study of the Greater Bay Area, China," Land, MDPI, vol. 10(6), pages 1-26, June.
    5. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiangmei Xiong & Yulin Hswen & John A. Naslund, 2020. "Digital Surveillance for Monitoring Environmental Health Threats: A Case Study Capturing Public Opinion from Twitter about the 2019 Chennai Water Crisis," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
    2. Wijesiri, Buddhi & Hettiarachchi, Akash, 2021. "How gender disparities in urban and rural areas influence access to safe drinking water," Utilities Policy, Elsevier, vol. 68(C).
    3. Sudheer Padikkal & K. S. Sumam & N. Sajikumar, 2018. "Sustainability indicators of water sharing compacts," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2027-2042, October.
    4. Rachel Warren & Oliver Andrews & Sally Brown & Felipe J. Colón-González & Nicole Forstenhäusler & David E. H. J. Gernaat & P. Goodwin & Ian Harris & Yi He & Chris Hope & Desmond Manful & Timothy J. Os, 2022. "Quantifying risks avoided by limiting global warming to 1.5 or 2 °C above pre-industrial levels," Climatic Change, Springer, vol. 172(3), pages 1-16, June.
    5. Mónica Maldonado-Devis & Vicent Almenar-Llongo, 2021. "A Panel Data Estimation of Domestic Water Demand with IRT Tariff Structure: The Case of the City of Valencia (Spain)," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    6. Maria Fitzner & Anna Fricke & Monika Schreiner & Susanne Baldermann, 2021. "Utilization of Regional Natural Brines for the Indoor Cultivation of Salicornia europaea," Sustainability, MDPI, vol. 13(21), pages 1-12, November.
    7. Antonio A. Pinto & Susana Fischer & Rosemarie Wilckens & Luis Bustamante & Marisol T. Berti, 2021. "Production Efficiency and Total Protein Yield in Quinoa Grown under Water Stress," Agriculture, MDPI, vol. 11(11), pages 1-18, November.
    8. Vimal Mishra & Rohini Kumar & Harsh L. Shah & Luis Samaniego & S. Eisner & Tao Yang, 2017. "Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change," Climatic Change, Springer, vol. 141(3), pages 451-465, April.
    9. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    10. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    11. Philip Antwi-Agyei & Frank Baffour-Ata & Sarah Koomson & Nana Kwame Kyeretwie & Nana Barimah Nti & Afia Oforiwaa Owusu & Fukaiha Abdul Razak, 2023. "Drivers and coping mechanisms for floods: experiences of residents in urban Kumasi, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2477-2500, March.
    12. Penglong Wang & Yao Wei & Fanglei Zhong & Xiaoyu Song & Bao Wang & Qinhua Wang, 2022. "Evaluation of Agricultural Water Resources Carrying Capacity and Its Influencing Factors: A Case Study of Townships in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(5), pages 1-24, May.
    13. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.
    14. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Shao Sun & Zunya Wang & Chuanye Hu & Ge Gao, 2021. "Understanding Climate Hazard Patterns and Urban Adaptation Measures in China," Sustainability, MDPI, vol. 13(24), pages 1-12, December.
    16. Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
    17. Courtney M. Regan & Jeffery D. Connor & Md Sayed Iftekhar, 2023. "An economic assessment of options for operating within plantation forestry water entitlements and tightening cap and trade policy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 303-322, April.
    18. Osberghaus, Daniel & Reif, Christiane, 2021. "How do different compensation schemes and loss experience affect insurance decisions? Experimental evidence from two independent and heterogeneous samples," Ecological Economics, Elsevier, vol. 187(C).
    19. Philippe A. Ker Rault & Phoebe Koundouri & Ebun Akinsete & Ralf Ludwig & Verena Huber-Garcia & Stella Tsani & Vicenc Acuna & Eleni Kalogianni & Joke Luttik & Kasper Kok & Nikolaos Skoulikidis & Jochen, 2019. "Down scaling of climate change scenarii to river basin level: A transdisciplinary methodology applied to Evrotas river basin, Greece," DEOS Working Papers 1913, Athens University of Economics and Business.
    20. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14148-:d:1246925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.