IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1190-d1029400.html
   My bibliography  Save this article

Opportunities for Water Reuse Implementation in Metropolitan Areas in a Complex Approach with an LCA Analysis, Taking Warsaw, Poland as an Example

Author

Listed:
  • Karolina Szalkowska

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland)

  • Monika Zubrowska-Sudol

    (Faculty of Building Services, Hydro and Environmental Engineering, Warsaw University of Technology, Nowowiejska 20, 00-653 Warsaw, Poland)

Abstract

Water shortages are currently becoming a more global than local issue. This paper aims to demonstrate a complex, universal urban water reuse system, allowing for a reduction of freshwater withdrawal. Opportunities for improvement were analyzed in the categories of municipal services: power and heat production, greenery irrigation, landscaping, street and public transport fleet cleaning. Technical possibilities were coupled with current international legislative requirements. Two scenarios for universal, complex water reuse systems in the municipal area were evaluated, including all essential city services. Results of the case study show that ozonation and filtration of treated wastewater should be sufficient to obtain the desired water quality for urban purposes. Current legislation mainly addresses agricultural water reuse, so their requirements should be adjusted to assess the water quality needed for other applications. When water is used in public spaces, constant monitoring for the presence of pathogens should be maintained due to the risk of human exposure. A life cycle assessment was conducted to evaluate the environmental impacts associated with the topic of water transportation in urban areas, which is infrequently considered in such studies. Two scenarios including different means of transport were compared. It was shown that with constant daily operation, it is necessary to build an independent water network, since the environmental impact of water delivery by tank lorries increases substantially.

Suggested Citation

  • Karolina Szalkowska & Monika Zubrowska-Sudol, 2023. "Opportunities for Water Reuse Implementation in Metropolitan Areas in a Complex Approach with an LCA Analysis, Taking Warsaw, Poland as an Example," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1190-:d:1029400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jorgelina C. Pasqualino & Montse Meneses & Francesc Castells, 2011. "Life Cycle Assessment of Urban Wastewater Reclamation and Reuse Alternatives," Journal of Industrial Ecology, Yale University, vol. 15(1), pages 49-63, February.
    2. Xiaobo Xue Romeiko, 2019. "A Comparative Life Cycle Assessment of Crop Systems Irrigated with the Groundwater and Reclaimed Water in Northern China," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    3. Simon Gosling & Nigel Arnell, 2016. "A global assessment of the impact of climate change on water scarcity," Climatic Change, Springer, vol. 134(3), pages 371-385, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    2. Penglong Wang & Yao Wei & Fanglei Zhong & Xiaoyu Song & Bao Wang & Qinhua Wang, 2022. "Evaluation of Agricultural Water Resources Carrying Capacity and Its Influencing Factors: A Case Study of Townships in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(5), pages 1-24, May.
    3. Kledja Canaj & Andi Mehmeti & Julio Berbel, 2021. "The Economics of Fruit and Vegetable Production Irrigated with Reclaimed Water Incorporating the Hidden Costs of Life Cycle Environmental Impacts," Resources, MDPI, vol. 10(9), pages 1-13, September.
    4. Nancy Diaz-Elsayed & Jiayi Hua & Nader Rezaei & Qiong Zhang, 2023. "A Decision Framework for Designing Sustainable Wastewater-Based Resource Recovery Schemes," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    5. Courtney M. Regan & Jeffery D. Connor & Md Sayed Iftekhar, 2023. "An economic assessment of options for operating within plantation forestry water entitlements and tightening cap and trade policy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 303-322, April.
    6. Philippe A. Ker Rault & Phoebe Koundouri & Ebun Akinsete & Ralf Ludwig & Verena Huber-Garcia & Stella Tsani & Vicenc Acuna & Eleni Kalogianni & Joke Luttik & Kasper Kok & Nikolaos Skoulikidis & Jochen, 2019. "Down scaling of climate change scenarii to river basin level: A transdisciplinary methodology applied to Evrotas river basin, Greece," DEOS Working Papers 1913, Athens University of Economics and Business.
    7. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    8. Andi Mehmeti & Kledja Canaj, 2022. "Environmental Assessment of Wastewater Treatment and Reuse for Irrigation: A Mini-Review of LCA Studies," Resources, MDPI, vol. 11(10), pages 1-20, October.
    9. Philipp Kehrein & Mark van Loosdrecht & Patricia Osseweijer & John Posada & Jo Dewulf, 2020. "The SPPD-WRF Framework: A Novel and Holistic Methodology for Strategical Planning and Process Design of Water Resource Factories," Sustainability, MDPI, vol. 12(10), pages 1-31, May.
    10. María Luisa de Lázaro Torres & Pilar Borderías Uribeondo & Francisco José Morales Yago, 2020. "Citizen and Educational Initiatives to Support Sustainable Development Goal 6: Clean Water and Sanitation for All," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    11. Vimal Mishra & Rohini Kumar & Harsh L. Shah & Luis Samaniego & S. Eisner & Tao Yang, 2017. "Multimodel assessment of sensitivity and uncertainty of evapotranspiration and a proxy for available water resources under climate change," Climatic Change, Springer, vol. 141(3), pages 451-465, April.
    12. Temnani, Abdelmalek & Berríos, Pablo & Zapata-García, Susana & Pérez-Pastor, Alejandro, 2023. "Deficit irrigation strategies of flat peach trees under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 287(C).
    13. Ignacio Cazcarro & Carlos A. López‐Morales & Faye Duchin, 2019. "The global economic costs of substituting dietary protein from fish with meat, grains and legumes, and dairy," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1159-1171, October.
    14. Luigi Pari & Alessandro Suardi & Walter Stefanoni & Francesco Latterini & Nadia Palmieri, 2021. "Economic and Environmental Assessment of Two Different Rain Water Harvesting Systems for Agriculture," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
    15. Jiangmei Xiong & Yulin Hswen & John A. Naslund, 2020. "Digital Surveillance for Monitoring Environmental Health Threats: A Case Study Capturing Public Opinion from Twitter about the 2019 Chennai Water Crisis," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
    16. Wijesiri, Buddhi & Hettiarachchi, Akash, 2021. "How gender disparities in urban and rural areas influence access to safe drinking water," Utilities Policy, Elsevier, vol. 68(C).
    17. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    18. Aymen Sawassi & Roula Khadra, 2021. "Bibliometric Network Analysis of “Water Systems’ Adaptation to Climate Change Uncertainties”: Concepts, Approaches, Gaps, and Opportunities," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
    19. Meneses-Jácome, Alexander & Diaz-Chavez, Rocío & Velásquez-Arredondo, Héctor I. & Cárdenas-Chávez, Diana L. & Parra, Roberto & Ruiz-Colorado, Angela A., 2016. "Sustainable Energy from agro-industrial wastewaters in Latin-America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1249-1262.
    20. Fabio Sporchia & Nicoletta Patrizi & Federico Maria Pulselli, 2023. "Date Fruit Production and Consumption: A Perspective on Global Trends and Drivers from a Multidimensional Footprint Assessment," Sustainability, MDPI, vol. 15(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1190-:d:1029400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.