IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v165y2021i3d10.1007_s10584-021-03091-3.html
   My bibliography  Save this article

Climate warming affects spatio-temporal biodiversity patterns of a highly vulnerable Neotropical avifauna

Author

Listed:
  • David A. Prieto-Torres

    (Universidad Nacional Autónoma de México
    Universidad Nacional Autónoma de México)

  • Luis A. Sánchez-González

    (Universidad Nacional Autónoma de México)

  • Marco F. Ortiz-Ramírez

    (Universidad Nacional Autónoma de México
    Estrategia Tecnológica del CONACYT)

  • Jorge E. Ramírez-Albores

    (Universidad Nacional Autónoma de México
    Universidad Nacional Autónoma de México
    Universidad Autónoma del Estado de México)

  • Erick A. García-Trejo

    (Universidad Nacional Autónoma de México)

  • Adolfo G. Navarro-Sigüenza

    (Universidad Nacional Autónoma de México)

Abstract

Global climate change (GCC) is one of the most critical threats to biodiversity. We assessed how it might disrupt the spatio-temporal diversity dimensions of avifauna associated with endangered Neotropical seasonally dry forests (NSDF). We used ecological niche modeling estimating the geographic distributions of 151 highly vulnerable bird species (including swifts, hummingbirds, woodpeckers, and parrots) under current and future climate projections (2050s and 2070s). Then, using traditional metrics of beta-diversity for Sorensen’s index, we assessed how GCC could drive alterations in both alpha and beta taxonomic, phylogenetic, and functional (through birdsong frequencies and acoustic diversity) diversity for bird assemblages across the distribution of NSDF and within current protected areas. Likewise, we estimated the relationship between the expected changes in diversity dimensions with elevation, annual temperature, and precipitation seasonality across the NSDF distribution. Under GCC, we observed a general reduction for spatial taxonomic-richness of birds across the NSDF (−7.24 ± 6.69 spp. [2050s] and − 9.40 ± 7.58 spp. [2070s]), which also implies a general reduction for alpha phylogenetic and functional (except for the acoustic space) diversities by grid-cell. We also observed changes in the potential composition of communities (increasing, on average, the dissimilarity between sites) through space and time. Our results also suggest a biotic heterogenization for NSDF bird assemblages and that protected areas are not exempt from suffering such changes in biodiversity organization. Changes in spatio-temporal diversities were related to high temperatures and low rainfall across lowlands. Our results could inform new land-use planning and beta diversity conservation efforts in NSDF.

Suggested Citation

  • David A. Prieto-Torres & Luis A. Sánchez-González & Marco F. Ortiz-Ramírez & Jorge E. Ramírez-Albores & Erick A. García-Trejo & Adolfo G. Navarro-Sigüenza, 2021. "Climate warming affects spatio-temporal biodiversity patterns of a highly vulnerable Neotropical avifauna," Climatic Change, Springer, vol. 165(3), pages 1-20, April.
  • Handle: RePEc:spr:climat:v:165:y:2021:i:3:d:10.1007_s10584-021-03091-3
    DOI: 10.1007/s10584-021-03091-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03091-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03091-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Owens, Hannah L. & Campbell, Lindsay P. & Dornak, L. Lynnette & Saupe, Erin E. & Barve, Narayani & Soberón, Jorge & Ingenloff, Kate & Lira-Noriega, Andrés & Hensz, Christopher M. & Myers, Corinne E. &, 2013. "Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas," Ecological Modelling, Elsevier, vol. 263(C), pages 10-18.
    2. Regina Gabriela Medina & Andrés Lira-Noriega & Ezequiel Aráoz & María Laura Ponssa, 2020. "Potential effects of climate change on a Neotropical frog genus: changes in the spatial diversity patterns of Leptodactylus (Anura, Leptodactylidae) and implications for their conservation," Climatic Change, Springer, vol. 161(4), pages 535-553, August.
    3. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    4. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    2. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    3. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    4. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    5. Diederik Strubbe & Laura Jiménez & A. Márcia Barbosa & Amy J. S. Davis & Luc Lens & Carsten Rahbek, 2023. "Mechanistic models project bird invasions with accuracy," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Jiménez, Laura & Soberón, Jorge & Christen, J. Andrés & Soto, Desireé, 2019. "On the problem of modeling a fundamental niche from occurrence data," Ecological Modelling, Elsevier, vol. 397(C), pages 74-83.
    7. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    8. Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    9. Regina Gabriela Medina & Andrés Lira-Noriega & Ezequiel Aráoz & María Laura Ponssa, 2020. "Potential effects of climate change on a Neotropical frog genus: changes in the spatial diversity patterns of Leptodactylus (Anura, Leptodactylidae) and implications for their conservation," Climatic Change, Springer, vol. 161(4), pages 535-553, August.
    10. Carlos Mestanza-Ramón & Robinson J. Herrera Feijoo & Cristhian Chicaiza-Ortiz & Isabel Domínguez Gaibor & Rubén G. Mateo, 2021. "Estimation of Current and Future Suitable Areas for Tapirus pinchaque in Ecuador," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    11. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).
    12. Azuaje-Rodríguez, Roxiris A. & Silva, Sofia Marques & Carlos, Caio J., 2022. "Not going with the flow: Ecological niche of a migratory seabird, the South American Tern Sterna hirundinacea," Ecological Modelling, Elsevier, vol. 463(C).
    13. Owens, Hannah L. & Campbell, Lindsay P. & Dornak, L. Lynnette & Saupe, Erin E. & Barve, Narayani & Soberón, Jorge & Ingenloff, Kate & Lira-Noriega, Andrés & Hensz, Christopher M. & Myers, Corinne E. &, 2013. "Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas," Ecological Modelling, Elsevier, vol. 263(C), pages 10-18.
    14. Jiménez, L. & Soberón, J., 2022. "Estimating the fundamental niche: Accounting for the uneven availability of existing climates in the calibration area," Ecological Modelling, Elsevier, vol. 464(C).
    15. Stefan Vilges de Oliveira & Luis E Escobar & A Townsend Peterson & Rodrigo Gurgel-Gonçalves, 2013. "Potential Geographic Distribution of Hantavirus Reservoirs in Brazil," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    16. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    17. Wolke Tobón-Niedfeldt & Alicia Mastretta-Yanes & Tania Urquiza-Haas & Bárbara Goettsch & Angela P. Cuervo-Robayo & Esmeralda Urquiza-Haas & M. Andrea Orjuela-R & Francisca Acevedo Gasman & Oswaldo Oli, 2022. "Incorporating evolutionary and threat processes into crop wild relatives conservation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Lin, Yu-Pin & Wang, Cheng-Long & Yu, Hsiao-Hsuan & Huang, Chung-Wei & Wang, Yung-Chieh & Chen, Yu-Wen & Wu, Wei-Yao, 2011. "Monitoring and estimating the flow conditions and fish presence probability under various flow conditions at reach scale using genetic algorithms and kriging methods," Ecological Modelling, Elsevier, vol. 222(3), pages 762-775.
    19. Martín, Gerardo & Yáñez-Arenas, Carlos & Chiappa-Carrara, Xavier, 2022. "Discrepancies between point process models and environmental envelopes identify the niche centroid – geography configuration," Ecological Modelling, Elsevier, vol. 469(C).
    20. Soria-Auza, Rodrigo W. & Kessler, Michael & Bach, Kerstin & Barajas-Barbosa, Paola M. & Lehnert, Marcus & Herzog, Sebastian K. & Böhner, Jürgen, 2010. "Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: a case study from Bolivia," Ecological Modelling, Elsevier, vol. 221(8), pages 1221-1229.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:165:y:2021:i:3:d:10.1007_s10584-021-03091-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.