IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0085137.html
   My bibliography  Save this article

Potential Geographic Distribution of Hantavirus Reservoirs in Brazil

Author

Listed:
  • Stefan Vilges de Oliveira
  • Luis E Escobar
  • A Townsend Peterson
  • Rodrigo Gurgel-Gonçalves

Abstract

Hantavirus cardiopulmonary syndrome is an emerging zoonosis in Brazil. Human infections occur via inhalation of aerosolized viral particles from excreta of infected wild rodents. Necromys lasiurus and Oligoryzomys nigripes appear to be the main reservoirs of hantavirus in the Atlantic Forest and Cerrado biomes. We estimated and compared ecological niches of the two rodent species, and analyzed environmental factors influencing their occurrence, to understand the geography of hantavirus transmission. N. lasiurus showed a wide potential distribution in Brazil, in the Cerrado, Caatinga, and Atlantic Forest biomes. Highest climate suitability for O. nigripes was observed along the Brazilian Atlantic coast. Maximum temperature in the warmest months and annual precipitation were the variables that most influence the distributions of N. lasiurus and O. nigripes, respectively. Models based on occurrences of infected rodents estimated a broader area of risk for hantavirus transmission in southeastern and southern Brazil, coinciding with the distribution of human cases of hantavirus cardiopulmonary syndrome. We found no demonstrable environmental differences among occurrence sites for the rodents and for human cases of hantavirus. However, areas of northern and northeastern Brazil are also apparently suitable for the two species, without broad coincidence with human cases. Modeling of niches and distributions of rodent reservoirs indicates potential for transmission of hantavirus across virtually all of Brazil outside the Amazon Basin.

Suggested Citation

  • Stefan Vilges de Oliveira & Luis E Escobar & A Townsend Peterson & Rodrigo Gurgel-Gonçalves, 2013. "Potential Geographic Distribution of Hantavirus Reservoirs in Brazil," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
  • Handle: RePEc:plo:pone00:0085137
    DOI: 10.1371/journal.pone.0085137
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085137
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0085137&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0085137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    2. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    2. Carlos Yañez-Arenas & A. Townsend Peterson & Karla Rodríguez-Medina & Narayani Barve, 2016. "Mapping current and future potential snakebite risk in the new world," Climatic Change, Springer, vol. 134(4), pages 697-711, February.
    3. Herkt, K. Matthias B. & Barnikel, Günter & Skidmore, Andrew K. & Fahr, Jakob, 2016. "A high-resolution model of bat diversity and endemism for continental Africa," Ecological Modelling, Elsevier, vol. 320(C), pages 9-28.
    4. Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    5. Marianna V. P. Simões & Hanieh Saeedi & Marlon E. Cobos & Angelika Brandt, 2021. "Environmental matching reveals non-uniform range-shift patterns in benthic marine Crustacea," Climatic Change, Springer, vol. 168(3), pages 1-20, October.
    6. Azuaje-Rodríguez, Roxiris A. & Silva, Sofia Marques & Carlos, Caio J., 2022. "Not going with the flow: Ecological niche of a migratory seabird, the South American Tern Sterna hirundinacea," Ecological Modelling, Elsevier, vol. 463(C).
    7. Owens, Hannah L. & Campbell, Lindsay P. & Dornak, L. Lynnette & Saupe, Erin E. & Barve, Narayani & Soberón, Jorge & Ingenloff, Kate & Lira-Noriega, Andrés & Hensz, Christopher M. & Myers, Corinne E. &, 2013. "Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas," Ecological Modelling, Elsevier, vol. 263(C), pages 10-18.
    8. David A. Prieto-Torres & Luis A. Sánchez-González & Marco F. Ortiz-Ramírez & Jorge E. Ramírez-Albores & Erick A. García-Trejo & Adolfo G. Navarro-Sigüenza, 2021. "Climate warming affects spatio-temporal biodiversity patterns of a highly vulnerable Neotropical avifauna," Climatic Change, Springer, vol. 165(3), pages 1-20, April.
    9. Regina Gabriela Medina & Andrés Lira-Noriega & Ezequiel Aráoz & María Laura Ponssa, 2020. "Potential effects of climate change on a Neotropical frog genus: changes in the spatial diversity patterns of Leptodactylus (Anura, Leptodactylidae) and implications for their conservation," Climatic Change, Springer, vol. 161(4), pages 535-553, August.
    10. Carlos Mestanza-Ramón & Robinson J. Herrera Feijoo & Cristhian Chicaiza-Ortiz & Isabel Domínguez Gaibor & Rubén G. Mateo, 2021. "Estimation of Current and Future Suitable Areas for Tapirus pinchaque in Ecuador," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    11. Wiltshire, Kathryn H & Tanner, Jason E, 2020. "Comparing maximum entropy modelling methods to inform aquaculture site selection for novel seaweed species," Ecological Modelling, Elsevier, vol. 429(C).
    12. Alsamadisi, Adam G. & Tran, Liem T. & Papeş, Monica, 2020. "Employing inferences across scales: Integrating spatial data with different resolutions to enhance Maxent models," Ecological Modelling, Elsevier, vol. 415(C).
    13. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    14. Wongsathit Wongloet & Prach Kongthong & Aingorn Chaiyes & Worapong Singchat & Warong Suksavate & Nattakan Ariyaraphong & Thitipong Panthum & Artem Lisachov & Kitipong Jaisamut & Jumaporn Sonongbua & T, 2023. "Genetic Monitoring of the Last Captive Population of Greater Mouse-Deer on the Thai Mainland and Prediction of Habitat Suitability before Reintroduction," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    15. Inês Silva & Matthew Crane & Pongthep Suwanwaree & Colin Strine & Matt Goode, 2018. "Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-20, September.
    16. Wolke Tobón-Niedfeldt & Alicia Mastretta-Yanes & Tania Urquiza-Haas & Bárbara Goettsch & Angela P. Cuervo-Robayo & Esmeralda Urquiza-Haas & M. Andrea Orjuela-R & Francisca Acevedo Gasman & Oswaldo Oli, 2022. "Incorporating evolutionary and threat processes into crop wild relatives conservation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Wei Yang & Yuanxu Ma & Linhai Jing & Siyuan Wang & Zhongchang Sun & Yunwei Tang & Hui Li, 2022. "Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant’s Range," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    18. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    19. Liu, Canran & White, Matt & Newell, Graeme & Griffioen, Peter, 2013. "Species distribution modelling for conservation planning in Victoria, Australia," Ecological Modelling, Elsevier, vol. 249(C), pages 68-74.
    20. Fourcade, Yoan, 2021. "Fine-tuning niche models matters in invasion ecology. A lesson from the land planarian Obama nungara," Ecological Modelling, Elsevier, vol. 457(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0085137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.