IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v153y2019i1d10.1007_s10584-018-2316-x.html
   My bibliography  Save this article

Impacts of climate change on apple tree cultivation areas in Iran

Author

Listed:
  • Hamzeh Ahmadi

    (Hakim Sabzevari University)

  • Gholamabbas Fallah Ghalhari

    (Hakim Sabzevari University)

  • Mohammad Baaghideh

    (Hakim Sabzevari University)

Abstract

Climate change is the most important challenge for human advance in the future. The horticultural sector is sensitive and vulnerable to climate change. In the present study, to reveal the climate change of the future period on the apple tree cultivation areas in Iran, the simulated data from the HadGEM2-ES coupled model output from the CMIP5 model series under RCP8.5 and RCP4.5 scenarios as cynical and optimistic scenarios. The results showed that the increase of air temperature under the conditions of climate change is a serious stress for the deciduous trees in cold regions of Iran because it will reduce the regions for cultivating trees like apples. Climate change and changes in temperature patterns will cause changes in agroclimatic indexes associated with fruit trees. Typically, the minimum and maximum temperature of the apple tree growth period during the baseline will change according to the pessimistic scenario from 11.6 and 27.3 °C to 16.7 and 33.4 °C in the 2090s. Changes in the temperature indices and agroclimatic indices are higher than the vulnerability threshold for apple trees, showing the effect of climate change on fruit trees. In the upcoming period, the suitable area for apple tree cultivation in Iran will reach 29,073,448 ha. In fact, 46.7% of apple tree cultivation areas will be lost. Under the climate change conditions, the cultivation of apple trees in Iran will be extended to higher regions. An increase in air temperature will threaten deciduous trees in the cold regions of Iran.

Suggested Citation

  • Hamzeh Ahmadi & Gholamabbas Fallah Ghalhari & Mohammad Baaghideh, 2019. "Impacts of climate change on apple tree cultivation areas in Iran," Climatic Change, Springer, vol. 153(1), pages 91-103, March.
  • Handle: RePEc:spr:climat:v:153:y:2019:i:1:d:10.1007_s10584-018-2316-x
    DOI: 10.1007/s10584-018-2316-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2316-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2316-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, Peter G. & Thornton, Philip K., 2013. "Generating downscaled weather data from a suite of climate models for agricultural modelling applications," Agricultural Systems, Elsevier, vol. 114(C), pages 1-5.
    2. Machovina, Brian & Feeley, Kenneth J., 2013. "Climate change driven shifts in the extent and location of areas suitable for export banana production," Ecological Economics, Elsevier, vol. 95(C), pages 83-95.
    3. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2017. "Towards shifting planting date as an adaptation practice for rainfed wheat response to climate change," Agricultural Water Management, Elsevier, vol. 186(C), pages 108-119.
    4. Lauren E. Parker & John T. Abatzoglou, 2018. "Shifts in the thermal niche of almond under climate change," Climatic Change, Springer, vol. 147(1), pages 211-224, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Climate Change and Sustainability of Crop Yield in Dry Regions Food Insecurity," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    2. Samira Shayanmehr & Shida Rastegari Henneberry & Mahmood Sabouhi Sabouni & Naser Shahnoushi Foroushani, 2020. "Drought, Climate Change, and Dryland Wheat Yield Response: An Econometric Approach," IJERPH, MDPI, vol. 17(14), pages 1-18, July.
    3. Wan-Jiun Chen & Jihn-Fa Jan & Chih-Hsin Chung & Shyue-Cherng Liaw, 2022. "Resident Willingness to Pay for Ecosystem Services in Hillside Forests," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    4. Samira Shayanmehr & Jana Ivanič Porhajašová & Mária Babošová & Mahmood Sabouhi Sabouni & Hosein Mohammadi & Shida Rastegari Henneberry & Naser Shahnoushi Foroushani, 2022. "The Impacts of Climate Change on Water Resources and Crop Production in an Arid Region," Agriculture, MDPI, vol. 12(7), pages 1-22, July.
    5. Gabriel Granco & Haoji He & Brandon Lentz & Jully Voong & Alan Reeve & Exal Vega, 2023. "Mid- and End-of-the-Century Estimation of Agricultural Suitability of California’s Specialty Crops," Land, MDPI, vol. 12(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parisa Paymard & Mohammad Bannayan & Reza Sadrabadi Haghighi, 2018. "Analysis of the climate change effect on wheat production systems and investigate the potential of management strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1237-1255, April.
    2. Manners, Rhys & Vandamme, Elke & Adewopo, Julius & Thornton, Philip & Friedmann, Michael & Carpentier, Sebastien & Ezui, Kodjovi Senam & Thiele, Graham, 2021. "Suitability of root, tuber, and banana crops in Central Africa can be favoured under future climates," Agricultural Systems, Elsevier, vol. 193(C).
    3. A. Koocheki & M. Nassiri Mahallati & M. Bannayan & F. Yaghoubi, 2022. "Simulating resilience of rainfed wheat–based cropping systems of Iran under future climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(4), pages 1-30, April.
    4. Qaisar Saddique & Huanjie Cai & Jiatun Xu & Ali Ajaz & Jianqiang He & Qiang Yu & Yunfei Wang & Hui Chen & Muhammad Imran Khan & De Li Liu & Liang He, 2020. "Analyzing adaptation strategies for maize production under future climate change in Guanzhong Plain, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1523-1543, December.
    5. Jonathan E. Suk & Kristie L. Ebi & David Vose & Willy Wint & Neil Alexander & Koen Mintiens & Jan C. Semenza, 2014. "Indicators for Tracking European Vulnerabilities to the Risks of Infectious Disease Transmission due to Climate Change," IJERPH, MDPI, vol. 11(2), pages 1-18, February.
    6. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    7. Xinyu Dong & Peng Yuan & Yonghui Song & Wenxuan Yi, 2021. "Optimizing Green-Gray Infrastructure for Non-Point Source Pollution Control under Future Uncertainties," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    8. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    9. Euler, Michael & Hoffmann, Munir P. & Fathoni, Zakky & Schwarze, Stefan, 2016. "Exploring yield gaps in smallholder oil palm production systems in eastern Sumatra, Indonesia," Agricultural Systems, Elsevier, vol. 146(C), pages 111-119.
    10. Tassadit Kourat & Dalila Smadhi & Brahim Mouhouche & Nerdjes Gourari & M. G. Mostofa Amin & Christopher Robin Bryant, 2021. "Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2175-2203, July.
    11. Dunnett, A. & Shirsath, P.B. & Aggarwal, P.K. & Thornton, P. & Joshi, P.K. & Pal, B.D. & Khatri-Chhetri, A. & Ghosh, J., 2018. "Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions," Ecological Modelling, Elsevier, vol. 381(C), pages 23-35.
    12. Welikhe, Pauline & Essamuah-Quansah, Joseph & Boote, Kenneth & Asseng, Senthold & El Afandi, Gamal, 2016. "Impact of Climate Change on Corn Yields in Alabama," Professional Agricultural Workers Journal (PAWJ), Professional Agricultural Workers Conference, vol. 4(1), pages 1-16, October.
    13. Ali Sardar Shahraki & Tommaso Caloiero & Ommolbanin Bazrafshan, 2023. "Influence of Climatic Factors on Yields of Pistachio, Mango, and Bananas in Iran," Sustainability, MDPI, vol. 15(11), pages 1-14, June.
    14. Robinson, Sherman & Gueneau, Arthur, 2014. "Economic evaluation of the Diamer-Basha dam: Analysis with an integrated economic/water simulation model of Pakistan:," PSSP working papers 14, International Food Policy Research Institute (IFPRI).
    15. Yan, Zongzheng & Zhang, Xiying & Rashid, Muhammad Adil & Li, Hongjun & Jing, Haichun & Hochman, Zvi, 2020. "Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change," Agricultural Systems, Elsevier, vol. 178(C).
    16. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    17. Matteo Caravani & Jeremy Lind & Rachel Sabates‐Wheeler & Ian Scoones, 2022. "Providing social assistance and humanitarian relief: The case for embracing uncertainty," Development Policy Review, Overseas Development Institute, vol. 40(5), September.
    18. Annalisa Marini & Steve McCorriston, 2019. "Weather, Prices and Spillovers," Discussion Papers 1905, University of Exeter, Department of Economics.
    19. Malek, Žiga & Tieskens, Koen F. & Verburg, Peter H., 2019. "Explaining the global spatial distribution of organic crop producers," Agricultural Systems, Elsevier, vol. 176(C).
    20. Fust, Pascal & Schlecht, Eva, 2022. "Importance of timing: Vulnerability of semi-arid rangeland systems to increased variability in temporal distribution of rainfall events as predicted by future climate change," Ecological Modelling, Elsevier, vol. 468(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:153:y:2019:i:1:d:10.1007_s10584-018-2316-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.