IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v152y2019i3d10.1007_s10584-018-2353-5.html
   My bibliography  Save this article

Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic

Author

Listed:
  • Jan Geletič

    (Institute of Computer Science of the Czech Academy of Sciences
    Global Change Research Institute of the Czech Academy of Sciences)

  • Michal Lehnert

    (Palacký University)

  • Petr Dobrovolný

    (Global Change Research Institute of the Czech Academy of Sciences
    Masaryk University)

  • Maja Žuvela-Aloise

    (Zentralanstalt für Meteorologie und Geodynamik)

Abstract

With global climate change ongoing, there is growing concern about future living conditions in urban areas. This contribution presents the modelled spatial distribution of two daytime (summer days, hot days), and two night-time (warm nights and tropical nights) summer climate indices in the recent and future climate of the urban environment of Brno, Czech Republic, within the framework of local climate zones (LCZs). The thermodynamic MUKLIMO_3 model combined with the CUBOID method is used for spatial modelling. Climate indices are calculated from measurements over three periods (1961–1990, 1971–2000 and 1981–2010). The EURO-CORDEX database for two periods (2021–2050 and 2071–2100) and three representative concentration pathway (RCP) scenarios (2.6, 4.5 and 8.5) are employed to indicate future climate. The results show that the values of summer climate indices will significantly increase in the twenty-first century. In all LCZs, the increase per RCP 8.5 scenario is substantially more pronounced than scenarios per RCP 2.6 and 4.5. Our results indicate that a higher absolute increment in the number of hot days, warm nights and tropical nights is to be expected in already warmer, densely populated midrise and/or compact developments (LCZs 2, 3 and 5) in contrast to a substantially lower increment for forested areas (LCZ A). Considering the projected growth of summer climate indices and the profound differences that exist between LCZs, this study draws urgent attention to the importance of urban planning that works towards moderating the increasing heat stress in central European cities.

Suggested Citation

  • Jan Geletič & Michal Lehnert & Petr Dobrovolný & Maja Žuvela-Aloise, 2019. "Spatial modelling of summer climate indices based on local climate zones: expected changes in the future climate of Brno, Czech Republic," Climatic Change, Springer, vol. 152(3), pages 487-502, March.
  • Handle: RePEc:spr:climat:v:152:y:2019:i:3:d:10.1007_s10584-018-2353-5
    DOI: 10.1007/s10584-018-2353-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2353-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2353-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Žuvela-Aloise & R. Koch & S. Buchholz & B. Früh, 2016. "Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna," Climatic Change, Springer, vol. 135(3), pages 425-438, April.
    2. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    3. Alistair Hunt & Paul Watkiss, 2011. "Climate change impacts and adaptation in cities: a review of the literature," Climatic Change, Springer, vol. 104(1), pages 13-49, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nóra Skarbit & János Unger & Tamás Gál, 2024. "Evaluating the Impact of Heat Mitigation Strategies Using Added Urban Green Spaces during a Heatwave in a Medium-Sized City," Sustainability, MDPI, vol. 16(8), pages 1-17, April.
    2. Křištofová, Kristýna & Lehnert, Michal & Martinát, Stanislav & Tokar, Vladimír & Opravil, Zdeněk, 2022. "Adaptation to climate change in the eastern regions of the Czech Republic: An analysis of the measures proposed by local governments," Land Use Policy, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    2. Taedong Lee & Sara Hughes, 2017. "Perceptions of urban climate hazards and their effects on adaptation agendas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(5), pages 761-776, June.
    3. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    4. Nicolas Taconet & Aurélie Méjean & Céline Guivarch, 2020. "Influence of climate change impacts and mitigation costs on inequality between countries," Climatic Change, Springer, vol. 160(1), pages 15-34, May.
    5. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    6. Louise Bedsworth, 2012. "California’s local health agencies and the state’s climate adaptation strategy," Climatic Change, Springer, vol. 111(1), pages 119-133, March.
    7. Antje Otto & Kristine Kern & Wolfgang Haupt & Peter Eckersley & Annegret H. Thieken, 2021. "Ranking local climate policy: assessing the mitigation and adaptation activities of 104 German cities," Climatic Change, Springer, vol. 167(1), pages 1-23, July.
    8. Dilshad Ahmad & Muhammad Afzal, 2021. "Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11406-11426, August.
    9. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    10. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    11. Alper Ozpinar, 2023. "A Hyper-Integrated Mobility as a Service (MaaS) to Gamification and Carbon Market Enterprise Architecture Framework for Sustainable Environment," Energies, MDPI, vol. 16(5), pages 1-22, March.
    12. Flückiger, Matthias & Ludwig, Markus, 2022. "Temperature and risk of diarrhoea among children in Sub-Saharan Africa," World Development, Elsevier, vol. 160(C).
    13. Christoph Schneider & Bianca Achilles & Hendrik Merbitz, 2014. "Urbanity and Urbanization: An Interdisciplinary Review Combining Cultural and Physical Approaches," Land, MDPI, vol. 3(1), pages 1-26, January.
    14. Nicholas A. Mailloux & Colleen P. Henegan & Dorothy Lsoto & Kristen P. Patterson & Paul C. West & Jonathan A. Foley & Jonathan A. Patz, 2021. "Climate Solutions Double as Health Interventions," IJERPH, MDPI, vol. 18(24), pages 1-15, December.
    15. Shinji Otani & Satomi Funaki Ishizu & Toshio Masumoto & Hiroki Amano & Youichi Kurozawa, 2021. "The Effect of Minimum and Maximum Air Temperatures in the Summer on Heat Stroke in Japan: A Time-Stratified Case-Crossover Study," IJERPH, MDPI, vol. 18(4), pages 1-12, February.
    16. Neha Sinha, 2012. "Climate Change Issues and Global Negotiations," Insight on Africa, , vol. 4(1), pages 35-57, January.
    17. Sara Barron & Glenis Canete & Jeff Carmichael & David Flanders & Ellen Pond & Stephen Sheppard & Kristi Tatebe, 2012. "A Climate Change Adaptation Planning Process for Low-Lying, Communities Vulnerable to Sea Level Rise," Sustainability, MDPI, vol. 4(9), pages 1-33, September.
    18. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    19. Zhihui Liu & Yongna Meng & Hao Xiang & Yuanan Lu & Suyang Liu, 2020. "Association of Short-Term Exposure to Meteorological Factors and Risk of Hand, Foot, and Mouth Disease: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    20. Johnson, Katie & Breil, Margaretha, 2012. "Conceptualizing Urban Adaptation to Climate Change Findings from an Applied Adaptation Assessment Framework," Climate Change and Sustainable Development 127429, Fondazione Eni Enrico Mattei (FEEM).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:152:y:2019:i:3:d:10.1007_s10584-018-2353-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.