IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v146y2018i1d10.1007_s10584-017-2109-7.html
   My bibliography  Save this article

Unique challenges and opportunities for northeastern US crop production in a changing climate

Author

Listed:
  • David W. Wolfe

    (Cornell University)

  • Arthur T. DeGaetano

    (Cornell University)

  • Gregory M. Peck

    (Cornell University)

  • Mary Carey

    (United States Department of Agriculture)

  • Lewis H. Ziska

    (United States Department of Agriculture)

  • John Lea-Cox

    (University of Maryland)

  • Armen R. Kemanian

    (Pennsylvania State University)

  • Michael P. Hoffmann

    (Cornell University)

  • David Y. Hollinger

    (United States Department of Agriculture Forest Service)

Abstract

Climate change may both exacerbate the vulnerabilities and open up new opportunities for farming in the Northeastern USA. Among the opportunities are double-cropping and new crop options that may come with warmer temperatures and a longer frost-free period. However, prolonged periods of spring rains in recent years have delayed planting and offset the potentially beneficial longer frost-free period. Water management will be a serious challenge for Northeast farmers in the future, with projections for increased frequency of heavy rainfall events, as well as projections for more frequent summer water deficits than this historically humid region has experienced in the past. Adaptations to increase resilience to such changes include expanded irrigation capacity, modernized water monitoring and irrigation scheduling, farm drainage systems that collect excess rain into ponds for use as a water source during dry periods, and improved soil water holding capacity and drainage. Among the greatest vulnerabilities over the next several decades for the economically important perennial fruit crop industry of the region is an extended period of spring frost risk associated with warmer winter and early spring temperatures. Improved real-time frost warning systems, careful site selection for new plantings, and use of misting, wind machine, or other frost protection measures will be important adaptation strategies. Increased weed and pest pressure associated with longer growing seasons and warmer winters is another increasingly important challenge. Pro-active development of non-chemical control strategies, improved regional monitoring, and rapid-response plans for targeted control of invasive weeds and pests will be necessary.

Suggested Citation

  • David W. Wolfe & Arthur T. DeGaetano & Gregory M. Peck & Mary Carey & Lewis H. Ziska & John Lea-Cox & Armen R. Kemanian & Michael P. Hoffmann & David Y. Hollinger, 2018. "Unique challenges and opportunities for northeastern US crop production in a changing climate," Climatic Change, Springer, vol. 146(1), pages 231-245, January.
  • Handle: RePEc:spr:climat:v:146:y:2018:i:1:d:10.1007_s10584-017-2109-7
    DOI: 10.1007/s10584-017-2109-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2109-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2109-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    2. Schipanski, Meagan E. & Barbercheck, Mary & Douglas, Margaret R. & Finney, Denise M. & Haider, Kristin & Kaye, Jason P. & Kemanian, Armen R. & Mortensen, David A. & Ryan, Matthew R. & Tooker, John & W, 2014. "A framework for evaluating ecosystem services provided by cover crops in agroecosystems," Agricultural Systems, Elsevier, vol. 125(C), pages 12-22.
    3. David Wolfe & Lewis Ziska & Curt Petzoldt & Abby Seaman & Larry Chase & Katharine Hayhoe, 2008. "Projected change in climate thresholds in the Northeastern U.S.: implications for crops, pests, livestock, and farmers," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 555-575, June.
    4. Holger Hoffmann & Thomas Rath, 2013. "Future Bloom and Blossom Frost Risk for Malus domestica Considering Climate Model and Impact Model Uncertainties," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    2. Ryan Ruggiero & Donald Ross & Joshua W. Faulkner, 2022. "Tile Drainage Flow Partitioning and Phosphorus Export in Vermont USA," Agriculture, MDPI, vol. 12(2), pages 1-18, January.
    3. Robert Kennedy Smith & Der-Chen Chang, 2020. "The utilization of a recursive algorithm to determine trends of soil moisture deficits in the Mid-Atlantic United States," Climatic Change, Springer, vol. 163(1), pages 217-235, November.
    4. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," Economic Information Bulletin 327359, United States Department of Agriculture, Economic Research Service.
    5. Guogang Wang & Shengnan Huang & Yongxiang Zhang & Sicheng Zhao & Chengji Han, 2022. "How Has Climate Change Driven the Evolution of Rice Distribution in China?," IJERPH, MDPI, vol. 19(23), pages 1-17, December.
    6. S. K. Birthisel & B. A. Eastman & A. R. Soucy & M. Paul & R. S. Clements & A. White & M. P. Acquafredda & W. Errickson & L-H. Zhu & M. C. Allen & S. A. Mills & G. Dimmig & K. M. Dittmer, 2020. "Convergence, continuity, and community: a framework for enabling emerging leaders to build climate solutions in agriculture, forestry, and aquaculture," Climatic Change, Springer, vol. 162(4), pages 2181-2195, October.
    7. Castaño-Sánchez, José P. & Karsten, Heather D. & Rotz, C. Alan, 2022. "Double cropping and manure management mitigate the environmental impact of a dairy farm under present and future climate," Agricultural Systems, Elsevier, vol. 196(C).
    8. Thorn, Alexandra M. & Baker, Michael J. & Peters, Christian J., 2021. "Estimating biological capacity for grass-finished ruminant meat production in New England and New York," Agricultural Systems, Elsevier, vol. 189(C).
    9. Peter Pfleiderer & Inga Menke & Carl-Friedrich Schleussner, 2019. "Increasing risks of apple tree frost damage under climate change," Climatic Change, Springer, vol. 157(3), pages 515-525, December.
    10. Christopher J. Picard & Jonathan M. Winter & Charlotte Cockburn & Janel Hanrahan & Natalie G. Teale & Patrick J. Clemins & Brian Beckage, 2023. "Twenty-first century increases in total and extreme precipitation across the Northeastern USA," Climatic Change, Springer, vol. 176(6), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    2. Jiří Mikšovský & Rudolf Brázdil & Petr Štĕpánek & Pavel Zahradníček & Petr Pišoft, 2014. "Long-term variability of temperature and precipitation in the Czech Lands: an attribution analysis," Climatic Change, Springer, vol. 125(2), pages 253-264, July.
    3. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    4. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    5. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    6. Ramos, Rodrigo Soares & Kumar, Lalit & Shabani, Farzin & Picanço, Marcelo Coutinho, 2019. "Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 524-535.
    7. Rashid, Muhammad Adil & Jabloun, Mohamed & Andersen, Mathias Neumann & Zhang, Xiying & Olesen, Jørgen Eivind, 2019. "Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 222(C), pages 193-203.
    8. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    9. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.
    10. Rungruang Janta & Laksanara Khwanchum & Pakorn Ditthakit & Nadhir Al-Ansari & Nguyen Thi Thuy Linh, 2022. "Water Yield Alteration in Thailand’s Pak Phanang Basin Due to Impacts of Climate and Land-Use Changes," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    11. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    12. Gregory Casey & Soheil Shayegh & Juan Moreno-Cruz & Martin Bunzl & Oded Galor & Ken Caldeira, 2019. "The Impact of Climate Change on Fertility," Working Papers 2019-2, Brown University, Department of Economics.
    13. Catherine C. Ivanovich & Tianyi Sun & Doria R. Gordon & Ilissa B. Ocko, 2023. "Future warming from global food consumption," Nature Climate Change, Nature, vol. 13(3), pages 297-302, March.
    14. Erik O. Sterner & Tom Adawi & U. Martin Persson & Ulrika Lundqvist, 2019. "Knowing how and knowing when: unpacking public understanding of atmospheric CO2 accumulation," Climatic Change, Springer, vol. 154(1), pages 49-67, May.
    15. Matthew A. Thomas & Ting Lin, 2018. "A dual model for emulation of thermosteric and dynamic sea-level change," Climatic Change, Springer, vol. 148(1), pages 311-324, May.
    16. Schmitz, Christoph & van Meijl, Hans & Kyle, Page & Fujimori, Shinichiro & Gurgel, Angelo & Havlik, Petr & d'Croz, Daniel Mason & Popp, Alexander & Sands, Ron & Tabeau, Andrzej & van der Mensbrugghe, , 2013. "An agro-economic model comparison of cropland change until 2050," Conference papers 332351, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Kizildeniz, T. & Irigoyen, J.J & Pascual, I. & Morales, F., 2018. "Simulating the impact of climate change (elevated CO2 and temperature, and water deficit) on the growth of red and white Tempranillo grapevine in three consecutive growing seasons (2013–2015)," Agricultural Water Management, Elsevier, vol. 202(C), pages 220-230.
    18. Alison Rothwell & Brad Ridoutt & William Bellotti, 2016. "Greenhouse Gas Implications of Peri-Urban Land Use Change in a Developed City under Four Future Climate Scenarios," Land, MDPI, vol. 5(4), pages 1-23, December.
    19. Xunzhang, Pan & Wenying, Chen & Clarke, Leon E. & Lining, Wang & Guannan, Liu, 2017. "China's energy system transformation towards the 2°C goal: Implications of different effort-sharing principles," Energy Policy, Elsevier, vol. 103(C), pages 116-126.
    20. De Pinto, A., 2018. "The Global Effects of Widespread Adoption of Climate Smart Agriculture," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277524, International Association of Agricultural Economists.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:146:y:2018:i:1:d:10.1007_s10584-017-2109-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.