IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v133y2015i4p665-679.html
   My bibliography  Save this article

Vulnerability assessment for loss of access to drinking water due to extreme weather events

Author

Listed:
  • Jeanne Luh
  • Elizabeth Christenson
  • Aizhan Toregozhina
  • David Holcomb
  • Tucker Witsil
  • Laura Hamrick
  • Edema Ojomo
  • Jamie Bartram

Abstract

Climate-related extreme weather events can result in the loss of drinking water access. We assessed the relative vulnerability of 3143 United States (U.S.) counties to loss of drinking water access due to droughts, floods, and cyclones. Five vulnerability assessment models from the literature were compared, each differing in the aggregation method used to combine the three determinants of vulnerability (V) – exposure (E), sensitivity (S), and adaptive capacity (AC). Exposure scores were calculated using historical occurrence data, sensitivity scores were determined from the intrinsic resilience of the drinking water technologies, and adaptive capacity scores were calculated from nine socioeconomic indicators. Our results showed that models V = E + S + AC and V = E + S–AC were the same, as were models V = E × S × AC and V = E × S ÷ AC. Between these two model forms (form 1: V = E + S + AC and V = E + S–AC; form 2: V = E × S × AC and V = E × S ÷ AC), scores from one model form could be used to predict scores from the second model form, with R-squared values ranging from 0.61 to 0.82 depending on the extreme weather event type. A fifth model, V = (E–AC) × S was not found to correlate with any of the other four models. We used V = E + S + AC as our reference model as this resulted in a more uniform distribution of counties in each of the five intervals of vulnerability. Comparing the vulnerability scores identified the counties with greatest vulnerability to losing access to drinking water due to floods, droughts, and cyclones. Our results can be used to inform evidence-based decisions such as allocation of resources and implementation of adaptation strategies. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Jeanne Luh & Elizabeth Christenson & Aizhan Toregozhina & David Holcomb & Tucker Witsil & Laura Hamrick & Edema Ojomo & Jamie Bartram, 2015. "Vulnerability assessment for loss of access to drinking water due to extreme weather events," Climatic Change, Springer, vol. 133(4), pages 665-679, December.
  • Handle: RePEc:spr:climat:v:133:y:2015:i:4:p:665-679
    DOI: 10.1007/s10584-015-1493-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-015-1493-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-015-1493-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ., 2014. "Cost–utility analysis and equity," Chapters, in: Cost–Benefit Analysis and Health Care Evaluations, Second Edition, chapter 10, pages 281-310, Edward Elgar Publishing.
    2. Norman Ferrier & C. Haque, 2003. "Hazards Risk Assessment Methodology for Emergency Managers: A Standardized Framework for Application," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(2), pages 271-290, March.
    3. Glwadys A. Gbetibouo & Claudia Ringler & Rashid Hassan, 2010. "Vulnerability of the South African farming sector to climate change and variability: An indicator approach," Natural Resources Forum, Blackwell Publishing, vol. 34, pages 175-187, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer Shriber & Kathryn C. Conlon & Kaitlin Benedict & Orion Z. McCotter & Jesse E. Bell, 2017. "Assessment of Vulnerability to Coccidioidomycosis in Arizona and California," IJERPH, MDPI, vol. 14(7), pages 1-16, June.
    2. Wei Pei & Cuizhu Tian & Qiang Fu & Yongtai Ren & Tianxiao Li, 2022. "Risk analysis and influencing factors of drought and flood disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1599-1620, February.
    3. Austin, Wes & Pan, Siyu & Parthum, Bryan M., 2024. "When it Rains, it Pours: Severe Weather Events, Flooding, and Drinking Water Quality," National Center for Environmental Economics-NCEE Working Papers 348901, United States Environmental Protection Agency (EPA).
    4. Rachid Muleia & Genito Maúre & Américo José & Plácida Maholela & Isaac Akpor Adjei & Md. Rezaul Karim & Sónia Trigo & Waltaji Kutane & Osvaldo Inlamea & Lawrence N. Kazembe & Tatiana Marrufo, 2024. "Assessing the Vulnerability and Adaptation Needs of Mozambique’s Health Sector to Climate: A Comprehensive Study," IJERPH, MDPI, vol. 21(5), pages 1-21, April.
    5. Wei Pei & Qiang Fu & Dong Liu & Tianxiao Li & Kun Cheng & Song Cui, 2019. "A Novel Method for Agricultural Drought Risk Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2033-2047, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdollahzadeh, Gholamhossein & Sharifzadeh, Mohammad Sharif & Sklenička, Petr & Azadi, Hossein, 2023. "Adaptive capacity of farming systems to climate change in Iran: Application of composite index approach," Agricultural Systems, Elsevier, vol. 204(C).
    2. Samrat Majumdar & Arijit Das & Sujit Mandal, 2023. "River bank erosion and livelihood vulnerability of the local population at Manikchak block in West Bengal, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 138-175, January.
    3. Jianjun Huai, 2016. "Role of Livelihood Capital in Reducing Climatic Vulnerability: Insights of Australian Wheat from 1990–2010," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-18, March.
    4. Kimleng Sa, 2017. "Urban Climate Vulnerability in Cambodia: A Case Study in Koh Kong Province," Economies, MDPI, vol. 5(4), pages 1-19, November.
    5. Abdullah Mamun & Abu Reza Md. Towfiqul Islam & G. M. Monirul Alam & Md Nazirul Islam Sarker & Michael Odei Erdiaw-Kwasie & Humnath Bhandari & Javed Mallick, 2023. "Livelihood vulnerability of char land communities to climate change and natural hazards in Bangladesh: an application of livelihood vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1411-1437, January.
    6. C. Emdad Haque & Mahed-Ul-Islam Choudhury & Md. Sowayib Sikder, 2019. "“Events and failures are our only means for making policy changes”: learning in disaster and emergency management policies in Manitoba, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 137-162, August.
    7. Paolo Prosperi & Thomas Allen & Bruce Cogill & Martine Padilla & Iuri Peri, 2016. "Towards metrics of sustainable food systems: a review of the resilience and vulnerability literature," Environment Systems and Decisions, Springer, vol. 36(1), pages 3-19, March.
    8. Ria Jhoanna C. Ducusin & Maria Victoria O. Espaldon & Carmelita M. Rebancos & Lucille Elna P. Guzman, 2019. "Vulnerability assessment of climate change impacts on a Globally Important Agricultural Heritage System (GIAHS) in the Philippines: the case of Batad Rice Terraces, Banaue, Ifugao, Philippines," Climatic Change, Springer, vol. 153(3), pages 395-421, April.
    9. Bahareh Kamali & Karim C. Abbaspour & Bernhard Wehrli & Hong Yang, 2019. "A Quantitative Analysis of Socio-Economic Determinants Influencing Crop Drought Vulnerability in Sub-Saharan Africa," Sustainability, MDPI, vol. 11(21), pages 1-18, November.
    10. Dossou, Smith A.R. & Aoudji, Augustin K. N. & Vissoh, Pierre & Zannou, Afio, 2021. "Effect of Social Networks and Performance of Young Women Agribusiness Owners in a Developing Country: The Moderating Effect of Business Environment," 2021 Conference, August 17-31, 2021, Virtual 315361, International Association of Agricultural Economists.
    11. Costas Armenakis & N. Nirupama, 2013. "Prioritization of disaster risk in a community using GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(1), pages 15-29, March.
    12. Mundada, Aishwarya S. & Shah, Kunal K. & Pearce, J.M., 2016. "Levelized cost of electricity for solar photovoltaic, battery and cogen hybrid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 692-703.
    13. Ramilan, T. & Kumar, S. & Haileslassie, Amare & Craufurd, P. & Scrimgeour, F. & Kattarkandi, B. & Whitbread, A., 2022. "Quantifying farm household resilience and the implications of livelihood heterogeneity in the semi-arid tropics of India," Papers published in Journals (Open Access), International Water Management Institute, pages 1-12(4):466.
    14. Bo Fan, 2014. "Hybrid spatial data mining methods for site selection of emergency response centers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 643-656, January.
    15. Jochen Schmidt & Iain Matcham & Stefan Reese & Andrew King & Rob Bell & Roddy Henderson & Graeme Smart & Jim Cousins & Warwick Smith & Dave Heron, 2011. "Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1169-1192, September.
    16. Ibok, Otu W. & Osbahr, Henny & Srinivasan, Chittur, 2019. "Advancing a new index for measuring household vulnerability to food insecurity," Food Policy, Elsevier, vol. 84(C), pages 10-20.
    17. Rachid Muleia & Genito Maúre & Américo José & Plácida Maholela & Isaac Akpor Adjei & Md. Rezaul Karim & Sónia Trigo & Waltaji Kutane & Osvaldo Inlamea & Lawrence N. Kazembe & Tatiana Marrufo, 2024. "Assessing the Vulnerability and Adaptation Needs of Mozambique’s Health Sector to Climate: A Comprehensive Study," IJERPH, MDPI, vol. 21(5), pages 1-21, April.
    18. Ognjen Žurovec & Sabrija Čadro & Bishal Kumar Sitaula, 2017. "Quantitative Assessment of Vulnerability to Climate Change in Rural Municipalities of Bosnia and Herzegovina," Sustainability, MDPI, vol. 9(7), pages 1-18, July.
    19. Robert Becker Pickson & Ge He, 2021. "Smallholder Farmers’ Perceptions, Adaptation Constraints, and Determinants of Adaptive Capacity to Climate Change in Chengdu," SAGE Open, , vol. 11(3), pages 21582440211, July.
    20. Brett A Bryan & Jianjun Huai & Jeff Connor & Lei Gao & Darran King & John Kandulu & Gang Zhao, 2015. "What Actually Confers Adaptive Capacity? Insights from Agro-Climatic Vulnerability of Australian Wheat," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-20, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:133:y:2015:i:4:p:665-679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.