IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v129y2015i1p337-349.html

Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy

Author

Listed:
  • James Neumann

  • Kerry Emanuel
  • Sai Ravela
  • Lindsay Ludwig
  • Paul Kirshen
  • Kirk Bosma
  • Jeremy Martinich

Abstract

Recent literature, the US Global Change Research Program’s National Climate Assessment, and recent events, such as Hurricane Sandy, highlight the need to take better account of both storm surge and sea-level rise (SLR) in assessing coastal risks of climate change. This study combines three models—a tropical cyclone simulation model; a storm surge model; and a model for economic impact and adaptation—to estimate the joint effects of storm surge and SLR for the US coast through 2100. The model is tested using multiple SLR scenarios, including those incorporating estimates of dynamic ice-sheet melting, two global greenhouse gas (GHG) mitigation policy scenarios, and multiple general circulation model climate sensitivities. The results illustrate that a large area of coastal land and property is at risk of damage from storm surge today; that land area and economic value at risk expands over time as seas rise and as storms become more intense; that adaptation is a cost-effective response to this risk, but residual impacts remain after adaptation measures are in place; that incorporating site-specific episodic storm surge increases national damage estimates by a factor of two relative to SLR-only estimates, with greater impact on the East and Gulf coasts; and that mitigation of GHGs contributes to significant lessening of damages. For a mid-range climate-sensitivity scenario that incorporates dynamic ice sheet melting, the approach yields national estimates of the impacts of storm surge and SLR of $990 billion through 2100 (net of adaptation, cumulative undiscounted 2005$); GHG mitigation policy reduces the impacts of the mid-range climate-sensitivity estimates by $84 to $100 billion. Copyright The Author(s) 2015

Suggested Citation

  • James Neumann & Kerry Emanuel & Sai Ravela & Lindsay Ludwig & Paul Kirshen & Kirk Bosma & Jeremy Martinich, 2015. "Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy," Climatic Change, Springer, vol. 129(1), pages 337-349, March.
  • Handle: RePEc:spr:climat:v:129:y:2015:i:1:p:337-349
    DOI: 10.1007/s10584-014-1304-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1304-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1304-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Asbury H. Sallenger & Kara S. Doran & Peter A. Howd, 2012. "Hotspot of accelerated sea-level rise on the Atlantic coast of North America," Nature Climate Change, Nature, vol. 2(12), pages 884-888, December.
    2. Daiju Narita & Richard Tol & David Anthoff, 2010. "Economic costs of extratropical storms under climate change: an application of FUND," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 53(3), pages 371-384.
    3. Robert Mendelsohn & Kerry Emanuel & Shun Chonabayashi & Laura Bakkensen, 2012. "The impact of climate change on global tropical cyclone damage," Nature Climate Change, Nature, vol. 2(3), pages 205-209, March.
    4. Paul Kirshen & Samuel Merrill & Peter Slovinsky & Norman Richardson, 2012. "Simplified method for scenario-based risk assessment adaptation planning in the coastal zone," Climatic Change, Springer, vol. 113(3), pages 919-931, August.
    5. Ning Lin & Kerry Emanuel & Michael Oppenheimer & Erik Vanmarcke, 2012. "Physically based assessment of hurricane surge threat under climate change," Nature Climate Change, Nature, vol. 2(6), pages 462-467, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neumann James E. & Strzepek Kenneth, 2014. "State of the literature on the economic impacts of climate change in the United States," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 411-443, December.
    2. S. Niggol Seo, 2017. "Measuring Policy Benefits Of The Cyclone Shelter Program In The North Indian Ocean: Protection From Intense Winds Or High Storm Surges?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-18, November.
    3. Zhuo Zhang & Changsheng Chen & Zhiyao Song & Dong Zhang & Di Hu & Fei Guo, 2020. "A FVCOM study of the potential coastal flooding in apponagansett bay and clarks cove, Dartmouth Town (MA)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2787-2809, September.
    4. Matthew Ranson & Lisa Tarquinio & Audrey Lew, 2016. "Modeling the Impact of Climate Change on Extreme Weather Losses," NCEE Working Paper Series 201602, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised May 2016.
    5. Ming Li & Fan Zhang & Samuel Barnes & Xiaohong Wang, 2020. "Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2561-2588, September.
    6. Bosello, Francesco & De Cian, Enrica, 2014. "Climate change, sea level rise, and coastal disasters. A review of modeling practices," Energy Economics, Elsevier, vol. 46(C), pages 593-605.
    7. Kai Parker & Li Erikson & Jennifer Thomas & Kees Nederhoff & Patrick Barnard & Sanne Muis, 2023. "Relative contributions of water-level components to extreme water levels along the US Southeast Atlantic Coast from a regional-scale water-level hindcast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2219-2248, July.
    8. S. Niggol Seo & Laura A. Bakkensen, 2016. "Did adaptation strategies work? High fatalities from tropical cyclones in the North Indian Ocean and future vulnerability under global warming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1341-1355, June.
    9. Tsvetan Tsvetanov & Farhed Shah, 2013. "The economic value of delaying adaptation to sea-level rise: An application to coastal properties in Connecticut," Climatic Change, Springer, vol. 121(2), pages 177-193, November.
    10. Matthew Ranson & Carolyn Kousky & Matthias Ruth & Lesley Jantarasami & Allison Crimmins & Lisa Tarquinio, 2014. "Tropical and extratropical cyclone damages under climate change," Climatic Change, Springer, vol. 127(2), pages 227-241, November.
    11. Pugatch, Todd, 2019. "Tropical storms and mortality under climate change," World Development, Elsevier, vol. 117(C), pages 172-182.
    12. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    13. Feng, Shufang & Peng, Ruiyan & Wang, Peihong & Peng, Benrong, 2025. "Mitigating typhoon damage with wetlands: estimating the typhoon protection value of intertidal and inland wetlands in China," Ecosystem Services, Elsevier, vol. 75(C).
    14. Jidong Wu & Ying Li & Ning Li & Peijun Shi, 2018. "Development of an Asset Value Map for Disaster Risk Assessment in China by Spatial Disaggregation Using Ancillary Remote Sensing Data," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 17-30, January.
    15. Isabelle Chort & Maëlys de La Rupelle, 2019. "Managing the Impact of Climate on Migration: Evidence from Mexico," Working papers of CATT hal-02938034, HAL.
    16. E. Watson & A. Oczkowski & C. Wigand & A. Hanson & E. Davey & S. Crosby & R. Johnson & H. Andrews, 2014. "Nutrient enrichment and precipitation changes do not enhance resiliency of salt marshes to sea level rise in the Northeastern U.S," Climatic Change, Springer, vol. 125(3), pages 501-509, August.
    17. Pelli, Martino & Tschopp, Jeanne & Bezmaternykh, Natalia & Eklou, Kodjovi M., 2023. "In the eye of the storm: Firms and capital destruction in India," Journal of Urban Economics, Elsevier, vol. 134(C).
    18. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    19. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Yuki Miura & Huda Qureshi & Chanyang Ryoo & Philip C. Dinenis & Jiao Li & Kyle T. Mandli & George Deodatis & Daniel Bienstock & Heather Lazrus & Rebecca Morss, 2021. "A methodological framework for determining an optimal coastal protection strategy against storm surges and sea level rise," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1821-1843, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:129:y:2015:i:1:p:337-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.