IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v125y2014i3p445-460.html
   My bibliography  Save this article

Projected climate change impacts on spatial distribution of bioclimatic zones and ecoregions within the Kailash Sacred Landscape of China, India, Nepal

Author

Listed:
  • Robert Zomer
  • Antonio Trabucco
  • Marc Metzger
  • Mingcheng Wang
  • Krishna Oli
  • Jianchu Xu

Abstract

Rapidly accelerating climate change in the Himalaya is projected to have major implications for montane species, ecosystems, and mountain farming and pastoral systems. A geospatial modeling approach based on a global environmental stratification is used to explore potential impacts of projected climate change on the spatial distribution of bioclimatic strata and ecoregions within the transboundary Kailash Sacred Landscape (KSL) of China, India and Nepal. Twenty-eight strata, comprising seven bioclimatic zones, were aggregated to develop an ecoregional classification of 12 ecoregions (generally defined by their potential dominant vegetation type), based upon vegetation and landcover characteristics. Projected climate change impacts were modeled by reconstructing the stratification based upon an ensemble of 19 Earth System Models (CIMP5) across four Representative Concentration Pathways (RCP) emission scenarios (i.e. 63 impact simulations), and identifying the change in spatial distribution of bioclimatic zones and ecoregions. Large and substantial shifts in bioclimatic conditions can be expected throughout the KSL area by the year 2050, within all bioclimatic zones and ecoregions. Over 76 % of the total area may shift to a different stratum, 55 % to a different bioclimatic zone, and 36.6 % to a different ecoregion. Potential impacts include upward shift in mean elevation of bioclimatic zones (357 m) and ecoregions (371 m), decreases in area of the highest elevation zones and ecoregions, large expansion of the lower tropical and sub-tropical zones and ecoregions, and the disappearance of several strata representing unique bioclimatic conditions within the KSL, with potentially high levels of biotic perturbance by 2050, and a high likelihood of major consequences for biodiversity, ecosystems, ecosystem services, conservation efforts and sustainable development policies in the region. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Robert Zomer & Antonio Trabucco & Marc Metzger & Mingcheng Wang & Krishna Oli & Jianchu Xu, 2014. "Projected climate change impacts on spatial distribution of bioclimatic zones and ecoregions within the Kailash Sacred Landscape of China, India, Nepal," Climatic Change, Springer, vol. 125(3), pages 445-460, August.
  • Handle: RePEc:spr:climat:v:125:y:2014:i:3:p:445-460
    DOI: 10.1007/s10584-014-1176-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1176-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1176-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. K. Maikhuri & K. S. Rao & R. L. Semwal, 2001. "Changing scenario of Himalayan agroecosystems: loss of agrobiodiversity, an indicator of environmental change in Central Himalaya, India," Environment Systems and Decisions, Springer, vol. 21(1), pages 23-39, March.
    2. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    3. Wilfried Thuiller, 2007. "Climate change and the ecologist," Nature, Nature, vol. 448(7153), pages 550-552, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dipesh Chapagain & Sanita Dhaubanjar & Luna Bharati, 2021. "Unpacking future climate extremes and their sectoral implications in western Nepal," Climatic Change, Springer, vol. 168(1), pages 1-23, September.
    2. Vishwas Chitale & Ramesh Silwal & Mir Matin, 2018. "Assessing the Impacts of Climate Change on Distribution of Major Non-Timber Forest Plants in Chitwan Annapurna Landscape, Nepal," Resources, MDPI, vol. 7(4), pages 1-12, October.
    3. Nirunrut Pomoim & Robert J. Zomer & Alice C. Hughes & Richard T. Corlett, 2021. "The Sustainability of Thailand’s Protected-Area System under Climate Change," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    4. Saudamini Das, "undated". "Evaluating the Role of Media in Averting Heat Stroke Mortality: A Daily Panel Data Analysis," Working papers 102, The South Asian Network for Development and Environmental Economics.
    5. Irfan Rashid & Shakil Romshoo & Rajiv Chaturvedi & N. Ravindranath & Raman Sukumar & Mathangi Jayaraman & Thatiparthi Lakshmi & Jagmohan Sharma, 2015. "Projected climate change impacts on vegetation distribution over Kashmir Himalayas," Climatic Change, Springer, vol. 132(4), pages 601-613, October.
    6. Yuyoung Choi & Chul-Hee Lim & Jieun Ryu & Seong Woo Jeon, 2017. "Bioclimatic Classification of Northeast Asia Reflecting Social Factors: Development and Characterization," Sustainability, MDPI, vol. 9(7), pages 1-18, June.
    7. Ludovic Touzé‐Peiffer & Anouk Barberousse & Hervé Le Treut, 2020. "The Coupled Model Intercomparison Project: History, uses, and structural effects on climate research," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    2. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    3. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    4. Sanjay Kr. Uniyal & Anjali Awasthi & Gopal S. Rawat, 2003. "Developmental Processes, Changing Lifestyle and Traditional Wisdom: Analyses from Western Himalaya," Environment Systems and Decisions, Springer, vol. 23(4), pages 307-312, December.
    5. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    6. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    7. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    8. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    9. Stephanie D. Maier & Jan Paul Lindner & Javier Francisco, 2019. "Conceptual Framework for Biodiversity Assessments in Global Value Chains," Sustainability, MDPI, vol. 11(7), pages 1-34, March.
    10. Poonam Tripathi & Mukund Dev Behera & Partha Sarathi Roy, 2017. "Optimized grid representation of plant species richness in India—Utility of an existing national database in integrated ecological analysis," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-13, March.
    11. Davis, Katrina & Pannell, David J. & Kragt, Marit & Gelcich, Stefan & Schilizzi, Steven, 2014. "Accounting for enforcement is essential to improve the spatial allocation of marine restricted-use zoning systems," Working Papers 195718, University of Western Australia, School of Agricultural and Resource Economics.
    12. Juliana Silveira dos Santos & Fausto Miziara & Hayla da Silva Fernandes & Renato Cezar Miranda & Rosane Garcia Collevatti, 2021. "Technification in Dairy Farms May Reconcile Habitat Conservation in a Brazilian Savanna Region," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    13. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    14. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    15. Sándor KESZTHELYI & Zsolt PÓNYA & Ferenc PÁL-FÁM, 2017. "Climate-induced seasonal activity and flight period of cerambycid beetles in the Zselic forests, Hungary," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 63(11), pages 503-510.
    16. Phondani, P.C. & Maikhuri, R.K. & Rawat, L.S. & Jugran, A. & Bhatt, A. & Bisht, N.S., 2017. "Policy implications of utilizing indigenous tree species as agroforestry systems in Himalayan states of India: Case study of Uttarakhand," Energy Policy, Elsevier, vol. 110(C), pages 202-209.
    17. Feng Dong & Chih-Ming Hung & Shou-Hsien Li & Xiao-Jun Yang, 2021. "Potential Himalayan community turnover through the Late Pleistocene," Climatic Change, Springer, vol. 164(1), pages 1-10, January.
    18. Johnston, Robert J. & Ramachandran, Mahesh & Schultz, Eric T. & Segerson, Kathleen & Besedin, Elena Y., 2011. "Characterizing Spatial Pattern in Ecosystem Service Values when Distance Decay Doesn’t Apply: Choice Experiments and Local Indicators of Spatial Association," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103374, Agricultural and Applied Economics Association.
    19. Tim Theissen & Annette Otte & Rainer Waldhardt, 2022. "High-Mountain Landscape Classification to Analyze Patterns of Land Use and Potential Natural Vegetation," Land, MDPI, vol. 11(7), pages 1-20, July.
    20. Laurent Debroux & Giuseppe Topa & David Kaimowitz & Alain Karsenty & Terese Hart & Awono Abdon & Fidele Amsini & Conrad Aveling & Alain Bertrand & Mohammed Bekhechi & Carlo Bravi & Eric Chezeaux & Ken, 2007. "Forests in Post- Conflict Democratic Republic of Congo: Analysis of a Priority Agenda," Selected Books, CIRAD, Forest department, UPR40, edition 1, volume 1, number 10.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:125:y:2014:i:3:p:445-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.