IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v119y2013i2p359-374.html
   My bibliography  Save this article

Expert assessment of vulnerability of permafrost carbon to climate change

Author

Listed:
  • E. Schuur
  • B. Abbott
  • W. Bowden
  • V. Brovkin
  • P. Camill
  • J. Canadell
  • J. Chanton
  • F. Chapin
  • T. Christensen
  • P. Ciais
  • B. Crosby
  • C. Czimczik
  • G. Grosse
  • J. Harden
  • D. Hayes
  • G. Hugelius
  • J. Jastrow
  • J. Jones
  • T. Kleinen
  • C. Koven
  • G. Krinner
  • P. Kuhry
  • D. Lawrence
  • A. McGuire
  • S. Natali
  • J. O’Donnell
  • C. Ping
  • W. Riley
  • A. Rinke
  • V. Romanovsky
  • A. Sannel
  • C. Schädel
  • K. Schaefer
  • J. Sky
  • Z. Subin
  • C. Tarnocai
  • M. Turetsky
  • M. Waldrop
  • K. Walter Anthony
  • K. Wickland
  • C. Wilson
  • S. Zimov

Abstract

Approximately 1700 Pg of soil carbon (C) are stored in the northern circumpolar permafrost zone, more than twice as much C than in the atmosphere. The overall amount, rate, and form of C released to the atmosphere in a warmer world will influence the strength of the permafrost C feedback to climate change. We used a survey to quantify variability in the perception of the vulnerability of permafrost C to climate change. Experts were asked to provide quantitative estimates of permafrost change in response to four scenarios of warming. For the highest warming scenario (RCP 8.5), experts hypothesized that C release from permafrost zone soils could be 19–45 Pg C by 2040, 162–288 Pg C by 2100, and 381–616 Pg C by 2300 in CO 2 equivalent using 100-year CH 4 global warming potential (GWP). These values become 50 % larger using 20-year CH 4 GWP, with a third to a half of expected climate forcing coming from CH 4 even though CH 4 was only 2.3 % of the expected C release. Experts projected that two-thirds of this release could be avoided under the lowest warming scenario (RCP 2.6). These results highlight the potential risk from permafrost thaw and serve to frame a hypothesis about the magnitude of this feedback to climate change. However, the level of emissions proposed here are unlikely to overshadow the impact of fossil fuel burning, which will continue to be the main source of C emissions and climate forcing. Copyright The Author(s) 2013

Suggested Citation

  • E. Schuur & B. Abbott & W. Bowden & V. Brovkin & P. Camill & J. Canadell & J. Chanton & F. Chapin & T. Christensen & P. Ciais & B. Crosby & C. Czimczik & G. Grosse & J. Harden & D. Hayes & G. Hugelius, 2013. "Expert assessment of vulnerability of permafrost carbon to climate change," Climatic Change, Springer, vol. 119(2), pages 359-374, July.
  • Handle: RePEc:spr:climat:v:119:y:2013:i:2:p:359-374
    DOI: 10.1007/s10584-013-0730-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0730-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0730-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. E. Romanovsky & T. E. Osterkamp, 2000. "Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 11(3), pages 219-239, July.
    2. T. E. Osterkamp & M. T. Jorgenson & E. A. G. Schuur & Y. L. Shur & M. Z. Kanevskiy & J. G. Vogel & V. E. Tumskoy, 2009. "Physical and ecological changes associated with warming permafrost and thermokarst in Interior Alaska," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 20(3), pages 235-256, July.
    3. Y. L. Shur & M. T. Jorgenson, 2007. "Patterns of permafrost formation and degradation in relation to climate and ecosystems," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 18(1), pages 7-19, January.
    4. M.R. Turetsky & W.F. Donahue & B.W. Benscoter, 2011. "Experimental drying intensifies burning and carbon losses in a northern peatland," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
    5. Willy Aspinall, 2010. "A route to more tractable expert advice," Nature, Nature, vol. 463(7279), pages 294-295, January.
    6. Edward A. G. Schuur & Jason G. Vogel & Kathryn G. Crummer & Hanna Lee & James O. Sickman & T. E. Osterkamp, 2009. "The effect of permafrost thaw on old carbon release and net carbon exchange from tundra," Nature, Nature, vol. 459(7246), pages 556-559, May.
    7. Glen P. Peters & Gregg Marland & Corinne Le Quéré & Thomas Boden & Josep G. Canadell & Michael R. Raupach, 2012. "Rapid growth in CO2 emissions after the 2008–2009 global financial crisis," Nature Climate Change, Nature, vol. 2(1), pages 2-4, January.
    8. Hubertus Fischer & Melanie Behrens & Michael Bock & Ulrike Richter & Jochen Schmitt & Laetitia Loulergue & Jerome Chappellaz & Renato Spahni & Thomas Blunier & Markus Leuenberger & Thomas F. Stocker, 2008. "Changing boreal methane sources and constant biomass burning during the last termination," Nature, Nature, vol. 452(7189), pages 864-867, April.
    9. Michelle C. Mack & M. Syndonia Bret-Harte & Teresa N. Hollingsworth & Randi R. Jandt & Edward A. G. Schuur & Gaius R. Shaver & David L. Verbyla, 2011. "Carbon loss from an unprecedented Arctic tundra wildfire," Nature, Nature, vol. 475(7357), pages 489-492, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Louise Kessler, 2017. "Estimating The Economic Impact Of The Permafrost Carbon Feedback," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-23, May.
    2. Louise Kessler, 2015. "Estimating the economic impact of the permafrost carbon feedback," GRI Working Papers 219, Grantham Research Institute on Climate Change and the Environment.
    3. Brock, William A. & Engström, Gustav & Grass, Dieter & Xepapadeas, Anastasios, 2013. "Energy balance climate models and general equilibrium optimal mitigation policies," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2371-2396.
    4. R. Macdonald & Z. Kuzyk & S. Johannessen, 2015. "It is not just about the ice: a geochemical perspective on the changing Arctic Ocean," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 288-301, September.
    5. Rafael Gonçalves-Araujo & Benjamin Rabe & Ilka Peeken & Astrid Bracher, 2018. "High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-27, January.
    6. Margaret S. Torn & Rose Z. Abramoff & Lydia J. S. Vaughn & Oriana E. Chafe & J. Bryan Curtis & Biao Zhu, 2025. "Large emissions of CO2 and CH4 due to active-layer warming in Arctic tundra," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roman Desyatkin & Matrena Okoneshnikova & Alexandra Ivanova & Maya Nikolaeva & Nikolay Filippov & Alexey Desyatkin, 2022. "Dynamics of Vegetation and Soil Cover of Pyrogenically Disturbed Areas of the Northern Taiga under Conditions of Thermokarst Development and Climate Warming," Land, MDPI, vol. 11(9), pages 1-21, September.
    2. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Meissner, Philip & Brands, Christian & Wulf, Torsten, 2017. "Quantifiying blind spots and weak signals in executive judgment: A structured integration of expert judgment into the scenario development process," International Journal of Forecasting, Elsevier, vol. 33(1), pages 244-253.
    4. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    5. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    6. López, Luis-Antonio & Arce, Guadalupe & Cadarso, María-Ángeles & Ortiz, Mateo & Zafrilla, Jorge, 2023. "The global dissemination to multinationals of the carbon emissions ruling on Shell," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 406-416.
    7. Yuquan Qu & Diego G. Miralles & Sander Veraverbeke & Harry Vereecken & Carsten Montzka, 2023. "Wildfire precursors show complementary predictability in different timescales," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Martin, R. & de Haas, Ralph & Muuls, Mirabelle & Schweiger, Helena, 2021. "Managerial and Financial Barriers to the Net-Zero Transition," Other publications TiSEM f0572d8a-40d7-458f-bb43-8, Tilburg University, School of Economics and Management.
    9. Andrea Mah & Eunkyung Song, 2024. "Elite Speech about Climate Change: Analysis of Sentiment from the United Nations Conference of Parties, 1995–2021," Sustainability, MDPI, vol. 16(7), pages 1-27, March.
    10. Stapleton, L.M. & Hanna, P. & Ravenscroft, N. & Church, A., 2014. "A flexible ecosystem services proto-typology based on public opinion," Ecological Economics, Elsevier, vol. 106(C), pages 83-90.
    11. Martina Pilloni & József Kádár & Tareq Abu Hamed, 2022. "The Impact of COVID-19 on Energy Start-Up Companies: The Use of Global Financial Crisis (GFC) as a Lesson for Future Recovery," Energies, MDPI, vol. 15(10), pages 1-15, May.
    12. Jing Song, 2023. "Ice Core Methane Analytical Techniques, Chronology and Concentration History Changes: A Review," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    13. Felix C. Nwaishi & Matthew Q. Morison & Brandon Van Huizen & Myroslava Khomik & Richard M. Petrone & Merrin L. Macrae, 2020. "Growing season CO2 exchange and evapotranspiration dynamics among thawing and intact permafrost landforms in the Western Hudson Bay lowlands," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 31(4), pages 509-523, October.
    14. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    15. David K Swanson, 2015. "Environmental Limits of Tall Shrubs in Alaska’s Arctic National Parks," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-34, September.
    16. Liam Wagner & Ian Ross & John Foster & Ben Hankamer, 2016. "Trading Off Global Fuel Supply, CO2 Emissions and Sustainable Development," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-17, March.
    17. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    18. Hanea, A.M. & McBride, M.F. & Burgman, M.A. & Wintle, B.C. & Fidler, F. & Flander, L. & Twardy, C.R. & Manning, B. & Mascaro, S., 2017. "I nvestigate D iscuss E stimate A ggregate for structured expert judgement," International Journal of Forecasting, Elsevier, vol. 33(1), pages 267-279.
    19. Mark A Burgman & Marissa McBride & Raquel Ashton & Andrew Speirs-Bridge & Louisa Flander & Bonnie Wintle & Fiona Fidler & Libby Rumpff & Charles Twardy, 2011. "Expert Status and Performance," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-7, July.
    20. Emanuel Kohlscheen & Richhild Moessner & Elod Takáts, 2021. "Effects of Carbon Pricing and Other Climate Policies on CO2 Emissions," CESifo Working Paper Series 9347, CESifo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:119:y:2013:i:2:p:359-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.