IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v119y2013i2p333-344.html
   My bibliography  Save this article

Seasonal variability of the observed and the projected daily temperatures in northern Saudi Arabia

Author

Listed:
  • H. Athar

Abstract

Variability in the observed daily temperature for the 31-year period (1978–2008) is studied for northern Saudi Arabia (nSA) by computing the probability distribution functions (PDFs) on a seasonal basis. The 31-year base period is divided into three decades and the results for the first (1978–1987) and the last decade (1999–2008) are presented. When averaged over all seasons, mean values of the observed decadal PDFs depict a positive shift from the first to last decade in the minimum, mean, and maximum temperature of 0.81 °C, 1.03 °C, and 1.25 °C, respectively. The daily temperature datasets from a regional climate model (RCM) and two versions of a coupled atmosphere-ocean general circulation model (AOGCM) are compared with the observed daily temperature datasets. The RCM is driven by re-analysis data for the historical period and by the HadCM3 model for the future, while the AOGCMs used are the GFDL CM2.0 and 2.1 models, with both HadCM3 and the GFDL simulations corresponding to the SRES A1B scenario. The average shifts from 1978–1987 to 1999–2008 in the mean value of the PDFs for the minimum, mean and maximum temperature are 0.63 °C, 0.54 °C and 0.45 °C, respectively, for the RCM, and 0.97 °C, 0.97 °C and 0.96 °C, respectively, for the AOGCM. Thus, the RCM shows a smaller shift in the mean of PDF for maximum temperature than for mean or minimum temperature, the AOGCM shows a comparable shift for all three, and the observations show a greater shift in the PDF for maximum temperature. For the period 2070–2099 relative to 1978–2008, the three average shifts are 4.11 °C, 3.87 °C and 3.44 °C for the RCM and 3.63 °C, 3.74 °C and 3.84 °C for the AOGCM. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • H. Athar, 2013. "Seasonal variability of the observed and the projected daily temperatures in northern Saudi Arabia," Climatic Change, Springer, vol. 119(2), pages 333-344, July.
  • Handle: RePEc:spr:climat:v:119:y:2013:i:2:p:333-344
    DOI: 10.1007/s10584-013-0717-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-0717-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-0717-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Lelieveld & P. Hadjinicolaou & E. Kostopoulou & J. Chenoweth & M. Maayar & C. Giannakopoulos & C. Hannides & M. Lange & M. Tanarhte & E. Tyrlis & E. Xoplaki, 2012. "Climate change and impacts in the Eastern Mediterranean and the Middle East," Climatic Change, Springer, vol. 114(3), pages 667-687, October.
    2. Simon Gosling & Glenn McGregor & Jason Lowe, 2012. "The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates," Climatic Change, Springer, vol. 112(2), pages 217-231, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    2. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Anita Lazurko & Henry David Venema, 2017. "Financing High Performance Climate Adaptation in Agriculture: Climate Bonds for Multi-Functional Water Harvesting Infrastructure on the Canadian Prairies," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    4. Seulkee Heo & Whanhee Lee & Michelle L. Bell, 2021. "Suicide and Associations with Air Pollution and Ambient Temperature: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 18(14), pages 1-21, July.
    5. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    6. Guy Gratton & Anil Padhra & Spyridon Rapsomanikis & Paul D. Williams, 2020. "The impacts of climate change on Greek airports," Climatic Change, Springer, vol. 160(2), pages 219-231, May.
    7. Pan, Xiongfeng & Wang, Mengyang & Li, Mengna, 2023. "Low-carbon policy and industrial structure upgrading: Based on the perspective of strategic interaction among local governments," Energy Policy, Elsevier, vol. 183(C).
    8. Qi Cui & Tariq Ali & Wei Xie & Jikun Huang & Jinxia Wang, 2022. "The uncertainty of climate change impacts on China’s agricultural economy based on an integrated assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-22, March.
    9. Dino, Ipek Gürsel & Meral Akgül, Cagla, 2019. "Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort," Renewable Energy, Elsevier, vol. 141(C), pages 828-846.
    10. Panagiotis Dalias & Anastasis Christou & Damianos Neocleous, 2018. "Adjustment of Irrigation Schedules as a Strategy to Mitigate Climate Change Impacts on Agriculture in Cyprus," Agriculture, MDPI, vol. 9(1), pages 1-9, December.
    11. Tarek Ben Hassen & Hamid El Bilali & Mohammed Al-Maadeed, 2020. "Agri-Food Markets in Qatar: Drivers, Trends, and Policy Responses," Sustainability, MDPI, vol. 12(9), pages 1-31, May.
    12. Khairy H. A. Hassan & Salman Alamery & Mohamed Farouk El-Kholy & Shobhan Das & Mounir M. Salem-Bekhit, 2022. "Effect of Some Soil Conditioners on Water-Use Efficacy, Growth, and Yield of Date Palm Siwi Grown in Sandy Soil under Different Irrigation Regimes to Mitigate Climate Change," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    13. Ron Drori & Baruch Ziv & Hadas Saaroni & Adi Etkin & Efrat Sheffer, 2021. "Recent changes in the rain regime over the Mediterranean climate region of Israel," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
    14. Abdullah Al Mamoon & Niels E. Joergensen & Ataur Rahman & Hassan Qasem, 2016. "Design rainfall in Qatar: sensitivity to climate change scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1797-1810, April.
    15. Aleš Urban & Katrin Burkart & Jan Kyselý & Christian Schuster & Eva Plavcová & Hana Hanzlíková & Petr Štěpánek & Tobia Lakes, 2016. "Spatial Patterns of Heat-Related Cardiovascular Mortality in the Czech Republic," IJERPH, MDPI, vol. 13(3), pages 1-19, March.
    16. Baris Karapinar & Gökhan Özertan, 2020. "Yield implications of date and cultivar adaptation to wheat phenological shifts: a survey of farmers in Turkey," Climatic Change, Springer, vol. 158(3), pages 453-472, February.
    17. Zachariadis, Theodoros & Taibi, Emanuele, 2015. "Exploring drivers of energy demand in Cyprus – Scenarios and policy options," Energy Policy, Elsevier, vol. 86(C), pages 166-175.
    18. Heba Akasha & Omid Ghaffarpasand & Francis D. Pope, 2023. "Climate Change, Air Pollution and the Associated Burden of Disease in the Arabian Peninsula and Neighbouring Regions: A Critical Review of the Literature," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    19. Raúl Castaño-Rosa & Roberto Barrella & Carmen Sánchez-Guevara & Ricardo Barbosa & Ioanna Kyprianou & Eleftheria Paschalidou & Nikolaos S. Thomaidis & Dusana Dokupilova & João Pedro Gouveia & József Ká, 2021. "Cooling Degree Models and Future Energy Demand in the Residential Sector. A Seven-Country Case Study," Sustainability, MDPI, vol. 13(5), pages 1-25, March.
    20. Ali Ahmadalipour & Hamid Moradkhani & Mukesh Kumar, 2019. "Mortality risk from heat stress expected to hit poorest nations the hardest," Climatic Change, Springer, vol. 152(3), pages 569-579, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:119:y:2013:i:2:p:333-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.