IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v167y2021i1d10.1007_s10584-021-03161-6.html
   My bibliography  Save this article

Recent changes in the rain regime over the Mediterranean climate region of Israel

Author

Listed:
  • Ron Drori

    (The Hebrew University of Jerusalem)

  • Baruch Ziv

    (The Hebrew University of Jerusalem
    The Open University of Israel)

  • Hadas Saaroni

    (Tel-Aviv University)

  • Adi Etkin

    (Tel-Aviv University)

  • Efrat Sheffer

    (The Hebrew University of Jerusalem)

Abstract

Previous observational analyses have shown a declining rainfall trend over Israel, mostly statistically insignificant. The current study, for the period 1975–2020, undermines these findings, and the alarming future projections, and elaborates other ingredients of the rain regime. No trend is found for the annual rainfall, reflecting a balance between a negative trend in the number of rainy days and a positive trend in the daily rainfall intensity, both on the order of 2.0%/decade. In the mid-winter, the rainfall and the daily intensity increased, while both declined in the autumn and spring, implying a contraction of the rainy season. The time span between accumulation of 10% and 90% of the annual rainfall, being 112 days on the average, shortened by 7 days during the study period. This is also expressed by an increase of the Seasonality Index, indicating that the regional climate is shifting from “markedly seasonal with a long dry season” to “most rain in ≤3 months.” The intra-seasonal course of the rainfall trend corresponds to that of the occurrence and intensity of the Cyprus Lows and the Mediterranean Oscillation. The contraction of the rainy season and the increase in the daily intensity have far-reaching environmental impacts in this vulnerable region.

Suggested Citation

  • Ron Drori & Baruch Ziv & Hadas Saaroni & Adi Etkin & Efrat Sheffer, 2021. "Recent changes in the rain regime over the Mediterranean climate region of Israel," Climatic Change, Springer, vol. 167(1), pages 1-21, July.
  • Handle: RePEc:spr:climat:v:167:y:2021:i:1:d:10.1007_s10584-021-03161-6
    DOI: 10.1007/s10584-021-03161-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03161-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03161-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Lelieveld & P. Hadjinicolaou & E. Kostopoulou & J. Chenoweth & M. Maayar & C. Giannakopoulos & C. Hannides & M. Lange & M. Tanarhte & E. Tyrlis & E. Xoplaki, 2012. "Climate change and impacts in the Eastern Mediterranean and the Middle East," Climatic Change, Springer, vol. 114(3), pages 667-687, October.
    2. Daniel R. Schlaepfer & John B. Bradford & William K. Lauenroth & Seth M. Munson & Britta Tietjen & Sonia A. Hall & Scott D. Wilson & Michael C. Duniway & Gensuo Jia & David A. Pyke & Ariuntsetseg Lkha, 2017. "Climate change reduces extent of temperate drylands and intensifies drought in deep soils," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariel Mordechai Meroz & Avshalom Babad & Noam Levin, 2024. "Identifying the Climatic and Anthropogenic Impact on Vegetation Surrounding the Natural Springs of the Arava Valley Using Remote Sensing Methods," Land, MDPI, vol. 13(3), pages 1-24, March.
    2. Elan J. Levy & Hubert B. Vonhof & Miryam Bar-Matthews & Alfredo Martínez-García & Avner Ayalon & Alan Matthews & Vered Silverman & Shira Raveh-Rubin & Tami Zilberman & Gal Yasur & Mareike Schmitt & Ge, 2023. "Weakened AMOC related to cooling and atmospheric circulation shifts in the last interglacial Eastern Mediterranean," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    2. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Liu, Ziqiang & Zhang, Huan & Yu, Xinxiao & Jia, Guodong & Jiang, Jiang, 2021. "Evidence of foliar water uptake in a conifer species," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Anita Lazurko & Henry David Venema, 2017. "Financing High Performance Climate Adaptation in Agriculture: Climate Bonds for Multi-Functional Water Harvesting Infrastructure on the Canadian Prairies," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    5. Tonggang Fu & Hongzhu Liang & Hui Gao & Jintong Liu, 2021. "The Taihang Mountain Region of North China is Experiencing A Significant Warming Trend," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    6. Seulkee Heo & Whanhee Lee & Michelle L. Bell, 2021. "Suicide and Associations with Air Pollution and Ambient Temperature: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 18(14), pages 1-21, July.
    7. Ruiwen Zhang & Chengyi Zhao & Xiaofei Ma & Karthikeyan Brindha & Qifei Han & Chaofan Li & Xiaoning Zhao, 2019. "Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    8. Yaoping Wang & Jiafu Mao & Forrest M. Hoffman & Céline J. W. Bonfils & Hervé Douville & Mingzhou Jin & Peter E. Thornton & Daniel M. Ricciuto & Xiaoying Shi & Haishan Chen & Stan D. Wullschleger & Shi, 2022. "Quantification of human contribution to soil moisture-based terrestrial aridity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Nouri, Milad & Homaee, Mehdi & Bannayan, Mohammad & Hoogenboom, Gerrit, 2016. "Towards modeling soil texture-specific sensitivity of wheat yield and water balance to climatic changes," Agricultural Water Management, Elsevier, vol. 177(C), pages 248-263.
    10. Guy Gratton & Anil Padhra & Spyridon Rapsomanikis & Paul D. Williams, 2020. "The impacts of climate change on Greek airports," Climatic Change, Springer, vol. 160(2), pages 219-231, May.
    11. Pan, Xiongfeng & Wang, Mengyang & Li, Mengna, 2023. "Low-carbon policy and industrial structure upgrading: Based on the perspective of strategic interaction among local governments," Energy Policy, Elsevier, vol. 183(C).
    12. Confidence Duku & Carlos Alho & Rik Leemans & Annemarie Groot, 2022. "IFAD Research Series 72: Climate change and food system activities - a review of emission trends, climate impacts and the effects of dietary change," IFAD Research Series 320722, International Fund for Agricultural Development (IFAD).
    13. Ouyang, Lei & Lu, Longwei & Wang, Chunlin & Li, Yanqiong & Wang, Jingyi & Zhao, Xiuhua & Gao, Lei & Zhu, Liwei & Ni, Guangyan & Zhao, Ping, 2022. "A 14-year experiment emphasizes the important role of heat factors in regulating tree transpiration, growth, and water use efficiency of Schima superba in South China," Agricultural Water Management, Elsevier, vol. 273(C).
    14. Wanlu Liu & Lulu Liu & Jiangbo Gao, 2020. "Adapting to climate change: gaps and strategies for Central Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1439-1459, December.
    15. Fouad H. Saeed & Mahmoud Saleh Al-Khafaji & Furat A. Mahmood Al-Faraj & Vincent Uzomah, 2024. "Sustainable Adaptation Plan in Response to Climate Change and Population Growth in the Iraqi Part of Tigris River Basin," Sustainability, MDPI, vol. 16(7), pages 1-16, March.
    16. Dino, Ipek Gürsel & Meral Akgül, Cagla, 2019. "Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort," Renewable Energy, Elsevier, vol. 141(C), pages 828-846.
    17. Panagiotis Dalias & Anastasis Christou & Damianos Neocleous, 2018. "Adjustment of Irrigation Schedules as a Strategy to Mitigate Climate Change Impacts on Agriculture in Cyprus," Agriculture, MDPI, vol. 9(1), pages 1-9, December.
    18. Tarek Ben Hassen & Hamid El Bilali & Mohammed Al-Maadeed, 2020. "Agri-Food Markets in Qatar: Drivers, Trends, and Policy Responses," Sustainability, MDPI, vol. 12(9), pages 1-31, May.
    19. Khairy H. A. Hassan & Salman Alamery & Mohamed Farouk El-Kholy & Shobhan Das & Mounir M. Salem-Bekhit, 2022. "Effect of Some Soil Conditioners on Water-Use Efficacy, Growth, and Yield of Date Palm Siwi Grown in Sandy Soil under Different Irrigation Regimes to Mitigate Climate Change," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    20. Abdullah Al Mamoon & Niels E. Joergensen & Ataur Rahman & Hassan Qasem, 2016. "Design rainfall in Qatar: sensitivity to climate change scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1797-1810, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:167:y:2021:i:1:d:10.1007_s10584-021-03161-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.