IDEAS home Printed from https://ideas.repec.org/a/spr/circec/v4y2024i1d10.1007_s43615-023-00294-x.html
   My bibliography  Save this article

Circularity of Nutrients for Food Security: a Case Study of By-products from Meat Industry

Author

Listed:
  • Adriana Cioato Ferrazza

    (Universidade Federal do Rio Grande do Sul (UFRGS))

  • José Uebi Maluf

    (Universidade Estadual do Oeste do Paraná)

  • Edson Talamini

    (Universidade Federal do Rio Grande do Sul (UFRGS))

Abstract

The depletion of nutrients available in the soil is related to the long-term unsustainability of the food production system. Planetary biophysical limits make it urgent to adopt circularity practices that recover nutrients from being reused in production systems. The animal protein production system demands high amounts of nutrients, reducing the natural availability in the soil, increasing extraction from natural stocks, and dispersing nutrients abroad. However, nutrients can be recovered from slaughtered chicken by-products, such as mechanically separated meat residues and pre-hydrolyzed chicken bone. The present study compared the nutrients recovered from mechanically separated meat residues and pre-hydrolyzed chicken bone char by fast pyrolysis at 450 °C, 550 °C, and 650 °C. Results indicate that nitrogen, carbon, and chromium reduce as the pyrolysis temperature increases, while phosphorus, calcium, and magnesium increase. Nutrient recovery is less sensitive to pyrolysis temperature in pre-hydrolyzed chicken bone char than in mechanically separated meat residues-bone char (Tukey p

Suggested Citation

  • Adriana Cioato Ferrazza & José Uebi Maluf & Edson Talamini, 2024. "Circularity of Nutrients for Food Security: a Case Study of By-products from Meat Industry," Circular Economy and Sustainability, Springer, vol. 4(1), pages 475-488, March.
  • Handle: RePEc:spr:circec:v:4:y:2024:i:1:d:10.1007_s43615-023-00294-x
    DOI: 10.1007/s43615-023-00294-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-023-00294-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-023-00294-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward Someus & Massimo Pugliese, 2018. "Concentrated Phosphorus Recovery from Food Grade Animal Bones," Sustainability, MDPI, vol. 10(7), pages 1-17, July.
    2. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    3. Manzoor Ahmad & Muhammad Ishaq & Wajid Ali Shah & Muhammad Adnan & Shah Fahad & Muhammad Hamzah Saleem & Fahim Ullah Khan & Maria Mussarat & Shadman Khan & Baber Ali & Yasser S. Mostafa & Saad Alamri , 2022. "Managing Phosphorus Availability from Organic and Inorganic Sources for Optimum Wheat Production in Calcareous Soils," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    4. C. Langhans & A. H. W. Beusen & J. M. Mogollón & A. F. Bouwman, 2022. "Phosphorus for Sustainable Development Goal target of doubling smallholder productivity," Nature Sustainability, Nature, vol. 5(1), pages 57-63, January.
    5. Christine Alewell & Bruno Ringeval & Cristiano Ballabio & David A. Robinson & Panos Panagos & Pasquale Borrelli, 2020. "Global phosphorus shortage will be aggravated by soil erosion," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    6. Garg, Rahul & Anand, Neeru & Kumar, Dinesh, 2016. "Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization," Renewable Energy, Elsevier, vol. 96(PA), pages 167-171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haiqing Gong & Yulong Yin & Zhong Chen & Qingsong Zhang & Xingshuai Tian & Zihan Wang & Yingcheng Wang & Zhenling Cui, 2025. "A dynamic optimization of soil phosphorus status approach could reduce phosphorus fertilizer use by half in China," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Ying, Zhi & Geng, Zhen & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2022. "Improving water electrolysis assisted by anodic biochar oxidation for clean hydrogen production," Energy, Elsevier, vol. 238(PB).
    3. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    4. Maksym Łaszewski & Michał Fedorczyk & Sylwia Gołaszewska & Zuzanna Kieliszek & Paulina Maciejewska & Jakub Miksa & Wiktoria Zacharkiewicz, 2021. "Land Cover Effects on Selected Nutrient Compounds in Small Lowland Agricultural Catchments," Land, MDPI, vol. 10(2), pages 1-20, February.
    5. Asifa Naz & Ansa Rebi & Raheela Naz & Muhammad Usman Akbar & Ana Aslam & Amina Kalsom & Abid Niaz & Muhammad Ibrar Ahmad & Shahrish Nawaz & Rizwana Kausar & Baber Ali & Muhammad Hamzah Saleem & Jinxin, 2023. "Impact of Green Manuring on Health of Low Fertility Calcareous Soils," Land, MDPI, vol. 12(3), pages 1-13, February.
    6. Szilvia Joó & Tünde Kuti & Csaba Baár & Andras Sebők & Florian Paillet & Eric Trably & Mechthild Donner & Hugo De Vries & Nathalie Gontard & Anne Verniquet & Annamaria Celli & Katrin Kayser & Burkhard, 2020. "NOAW project deliverable 7.3: Best-practice guidelines for farms and businesses on agricultural waste management," Working Papers hal-03346874, HAL.
    7. Zouhair Elkhlifi & Jerosha Iftikhar & Mohammad Sarraf & Baber Ali & Muhammad Hamzah Saleem & Irshad Ibranshahib & Mozart Daltro Bispo & Lucas Meili & Sezai Ercisli & Ehlinaz Torun Kayabasi & Naser Ale, 2023. "Potential Role of Biochar on Capturing Soil Nutrients, Carbon Sequestration and Managing Environmental Challenges: A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    8. João Pinto & Rui Boavida-Dias & Henrique A. Matos & João Azevedo, 2022. "Analysis of the Food Loss and Waste Valorisation of Animal By-Products from the Retail Sector," Sustainability, MDPI, vol. 14(5), pages 1-27, February.
    9. Nguyen Hong Duc & Pankaj Kumar & Pham Phuong Lan & Tonni Agustiono Kurniawan & Khaled Mohamed Khedher & Ali Kharrazi & Osamu Saito & Ram Avtar, 2023. "Hydrochemical indices as a proxy for assessing land-use impacts on water resources: a sustainable management perspective and case study of Can Tho City, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2573-2615, July.
    10. Celiktas, Melih Soner & Alptekin, Fikret Muge, 2019. "Conversion of model biomass to carbon-based material with high conductivity by using carbonization," Energy, Elsevier, vol. 188(C).
    11. Ying, Zhi & Du, Yueyue & Gu, Xufei & Yu, Xiaosha & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2024. "Biochar-assisted water electrolysis for energy-saving hydrogen production: Evolution of corn straw-based biochar structure and its enhanced effect on Cr(VI) removal," Energy, Elsevier, vol. 305(C).
    12. Sartori, Martina & Ferrari, Emanuele & M'Barek, Robert & Philippidis, George & Boysen-Urban, Kirsten & Borrelli, Pasquale & Montanarella, Luca & Panagos, Panos, 2024. "Remaining Loyal to Our Soil: A Prospective Integrated Assessment of Soil Erosion on Global Food Security," Ecological Economics, Elsevier, vol. 219(C).
    13. Mishra, Ranjeet Kumar & Mohanty, Kaustubha, 2019. "Pyrolysis of three waste biomass: Effect of biomass bed thickness and distance between successive beds on pyrolytic products yield and properties," Renewable Energy, Elsevier, vol. 141(C), pages 549-558.
    14. Bo Wang & Jie Yu & Hui Liao & Wenkun Zhu & Pingping Ding & Jian Zhou, 2020. "Adsorption of Lead (II) from Aqueous Solution with High Efficiency by Hydrothermal Biochar Derived from Honey," IJERPH, MDPI, vol. 17(10), pages 1-13, May.
    15. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    16. Muntwyler, Anna & Panagos, Panos & Morari, Francesco & Berti, Antonio & Jarosch, Klaus A. & Mayer, Jochen & Lugato, Emanuele, 2023. "Modelling phosphorus dynamics in four European long-term experiments," Agricultural Systems, Elsevier, vol. 206(C).
    17. Setter, C. & Oliveira, T.J.P., 2022. "Evaluation of the physical-mechanical and energy properties of coffee husk briquettes with kraft lignin during slow pyrolysis," Renewable Energy, Elsevier, vol. 189(C), pages 1007-1019.
    18. Henrique Rasera Raniro & Jéssica Papera & Lucas Urbano José & Rodrigo Maia Valença & Paulo Sergio Pavinato & Ludwig Hermann & Jakob Santner, 2023. "New investments in phosphorus research and training are paramount for Brazilian long-term environmental and food security," Environment Systems and Decisions, Springer, vol. 43(3), pages 504-508, September.
    19. Osama Tahir & Sajid Ali Khan Bangash & Muhammad Ibrahim & Sana Shahab & Sahir Hameed Khattak & Israr Ud Din & Muhammad Nauman Khan & Aqsa Hafeez & Sana Wahab & Baber Ali & Rania M. Makki & Steve Harak, 2022. "Evaluation of Agronomic Performance and Genetic Diversity Analysis Using Simple Sequence Repeats Markers in Selected Wheat Lines," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    20. Baena-Moreno, Francisco M. & Gonzalez-Castaño, Miriam & Arellano-García, Harvey & Reina, T.R., 2021. "Exploring profitability of bioeconomy paths: Dimethyl ether from biogas as case study," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:4:y:2024:i:1:d:10.1007_s43615-023-00294-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.