IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v25y2017i1d10.1007_s10100-016-0437-8.html
   My bibliography  Save this article

Generating subtour elimination constraints for the TSP from pure integer solutions

Author

Listed:
  • Ulrich Pferschy

    (University of Graz)

  • Rostislav Staněk

    (University of Graz)

Abstract

The traveling salesman problem (TSP) is one of the most prominent combinatorial optimization problems. Given a complete graph $$G = (V, E)$$ G = ( V , E ) and non-negative distances d for every edge, the TSP asks for a shortest tour through all vertices with respect to the distances d. The method of choice for solving the TSP to optimality is a branch and cut approach. Usually the integrality constraints are relaxed first and all separation processes to identify violated inequalities are done on fractional solutions. In our approach we try to exploit the impressive performance of current ILP-solvers and work only with integer solutions without ever interfering with fractional solutions. We stick to a very simple ILP-model and relax the subtour elimination constraints only. The resulting problem is solved to integer optimality, violated constraints (which are trivial to find) are added and the process is repeated until a feasible solution is found. In order to speed up the algorithm we pursue several attempts to find as many relevant subtours as possible. These attempts are based on the clustering of vertices with additional insights gained from empirical observations and random graph theory. Computational results are performed on test instances taken from the TSPLIB95 and on random Euclidean graphs.

Suggested Citation

  • Ulrich Pferschy & Rostislav Staněk, 2017. "Generating subtour elimination constraints for the TSP from pure integer solutions," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 231-260, March.
  • Handle: RePEc:spr:cejnor:v:25:y:2017:i:1:d:10.1007_s10100-016-0437-8
    DOI: 10.1007/s10100-016-0437-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-016-0437-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-016-0437-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harlan Crowder & Manfred W. Padberg, 1980. "Solving Large-Scale Symmetric Travelling Salesman Problems to Optimality," Management Science, INFORMS, vol. 26(5), pages 495-509, May.
    2. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gorka Kobeaga & María Merino & Jose A. Lozano, 2021. "On solving cycle problems with Branch-and-Cut: extending shrinking and exact subcycle elimination separation algorithms," Annals of Operations Research, Springer, vol. 305(1), pages 107-136, October.
    2. Bruno P. Bruck & Manuel Iori, 2017. "Non-Elementary Formulations for Single Vehicle Routing Problems with Pickups and Deliveries," Operations Research, INFORMS, vol. 65(6), pages 1597-1614, December.
    3. Mathijs Barkel & Maxence Delorme, 2023. "Arcflow Formulations and Constraint Generation Frameworks for the Two Bar Charts Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 475-494, March.
    4. Dragoš Cvetković & Mirjana Čangalović & Zorica Dražić & Vera Kovačević-Vujčić, 2018. "Complexity indices for the traveling salesman problem based on short edge subgraphs," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 759-769, September.
    5. Duygu Pamukcu & Burcu Balcik, 2020. "A multi-cover routing problem for planning rapid needs assessment under different information-sharing settings," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 1-42, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, Diptesh & Sumanta Basu, 2011. "Diversified Local Search for the Traveling Salesman Problem," IIMA Working Papers WP2011-01-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. Muren, & Wu, Jianjun & Zhou, Li & Du, Zhiping & Lv, Ying, 2019. "Mixed steepest descent algorithm for the traveling salesman problem and application in air logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 87-102.
    3. Manfred Padberg, 2005. "Classical Cuts for Mixed-Integer Programming and Branch-and-Cut," Annals of Operations Research, Springer, vol. 139(1), pages 321-352, October.
    4. Aardal, K.I. & van Hoesel, S., 1995. "Polyhedral Techniques in Combinatorial Optimization," Other publications TiSEM ed028a07-eb6a-4c8d-8f21-d, Tilburg University, School of Economics and Management.
    5. George Nemhauser, 2007. "Hooked on IP," Annals of Operations Research, Springer, vol. 149(1), pages 157-161, February.
    6. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    7. Jamal Ouenniche & Prasanna K. Ramaswamy & Michel Gendreau, 2017. "A dual local search framework for combinatorial optimization problems with TSP application," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1377-1398, November.
    8. Rafael Martinelli & Claudio Contardo, 2015. "Exact and Heuristic Algorithms for Capacitated Vehicle Routing Problems with Quadratic Costs Structure," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 658-676, November.
    9. Hanif D. Sherali & Patrick J. Driscoll, 2002. "On Tightening the Relaxations of Miller-Tucker-Zemlin Formulations for Asymmetric Traveling Salesman Problems," Operations Research, INFORMS, vol. 50(4), pages 656-669, August.
    10. Lisa K. Fleischer & Adam N. Letchford & Andrea Lodi, 2006. "Polynomial-Time Separation of a Superclass of Simple Comb Inequalities," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 696-713, November.
    11. Malaguti, Enrico & Martello, Silvano & Santini, Alberto, 2018. "The traveling salesman problem with pickups, deliveries, and draft limits," Omega, Elsevier, vol. 74(C), pages 50-58.
    12. Bernardino, Raquel & Paias, Ana, 2018. "Solving the family traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 453-466.
    13. Olcay Polat & Duygu Topaloğlu, 2022. "Collection of different types of milk with multi-tank tankers under uncertainty: a real case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-33, April.
    14. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    15. Neves-Moreira, Fábio & Almada-Lobo, Bernardo & Guimarães, Luís & Amorim, Pedro, 2022. "The multi-product inventory-routing problem with pickups and deliveries: Mitigating fluctuating demand via rolling horizon heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    16. Stock-Williams, Clym & Swamy, Siddharth Krishna, 2019. "Automated daily maintenance planning for offshore wind farms," Renewable Energy, Elsevier, vol. 133(C), pages 1393-1403.
    17. Furini, Fabio & Persiani, Carlo Alfredo & Toth, Paolo, 2016. "The Time Dependent Traveling Salesman Planning Problem in Controlled Airspace," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 38-55.
    18. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    19. Shen, Yunzhuang & Sun, Yuan & Li, Xiaodong & Eberhard, Andrew & Ernst, Andreas, 2023. "Adaptive solution prediction for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1392-1408.
    20. Schuijbroek, J. & Hampshire, R.C. & van Hoeve, W.-J., 2017. "Inventory rebalancing and vehicle routing in bike sharing systems," European Journal of Operational Research, Elsevier, vol. 257(3), pages 992-1004.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:25:y:2017:i:1:d:10.1007_s10100-016-0437-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.