IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v21y2023i4d10.1007_s10288-022-00526-0.html
   My bibliography  Save this article

A 2-phase approach for planning of hazardous waste collection using an unmanned aerial vehicle

Author

Listed:
  • Jihene Kaabi

    (University of Bahrain)

  • Youssef Harrath

    (University of Bahrain)

  • Amine Mahjoub

    (University of Bahrain)

  • Nabil Hewahi

    (University of Bahrain)

  • Khadija Abdulsattar

    (University of Bahrain)

Abstract

In this paper, a new Vehicle Routing Problem is studied. An unmanned aerial vehicle (UAV) is considered to handle the process of collecting hazardous waste from different sites. New constraints related to flying and weight capacities of the UAV are set. The goal is to collect the waste from the different sites within the shortest time. This paper includes four main contributions: (i) A proof of the strongly NP-hardness of the problem. (ii) A new linear program to optimally solve the problem for small-sized instances. (iii) An efficient 2-phase approach, called Maximum Waste in a Minimum Time during each Trip (MWMTT). (iv) A new tight lower bound to validate MWMTT. Phase 1 of MWMTT generates trips with maximum collected waste within the shortest time. Phase 2 uses a linear program to assign the trips generated in phase 1 into different groups in a way that the trips of the same group are performed by the UAV without the need to recharge it. An exhaustive experimental study was conducted using three randomly generated data sets for each of two experiments. In the first experiment, 16 small scale instances with number of sites varying from 10 to 40 are used. Whereas in the second experiment, 48 medium and large scale instances of 41 to 981 sites are considered. The results obtained by MWMTT in the small scale instances experiment are compared with the lower bound and the linear program. On the other hand, the results obtained by MWMTT in medium and large scale instances experiment are compared with only the lower bound. The obtained results show that MWMTT has a very promising performance. For small instances the average of the optimality gap between the result of the approach and the optimal solution (linear program) is less than 10 $$\%$$ % . For the medium and large instances, the gap moves almost in a steady state for every data set and the behavior of MWMTT is similar to the behavior of the lower bound.

Suggested Citation

  • Jihene Kaabi & Youssef Harrath & Amine Mahjoub & Nabil Hewahi & Khadija Abdulsattar, 2023. "A 2-phase approach for planning of hazardous waste collection using an unmanned aerial vehicle," 4OR, Springer, vol. 21(4), pages 585-608, December.
  • Handle: RePEc:spr:aqjoor:v:21:y:2023:i:4:d:10.1007_s10288-022-00526-0
    DOI: 10.1007/s10288-022-00526-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-022-00526-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-022-00526-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bektas, Tolga, 2006. "The multiple traveling salesman problem: an overview of formulations and solution procedures," Omega, Elsevier, vol. 34(3), pages 209-219, June.
    2. Q Mu & Z Fu & J Lysgaard & R Eglese, 2011. "Disruption management of the vehicle routing problem with vehicle breakdown," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 742-749, April.
    3. Rabbani, M. & Heidari, R. & Yazdanparast, R., 2019. "A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 272(3), pages 945-961.
    4. Quang Minh Ha & Yves Deville & Quang Dung Pham & Minh Hoàng Hà, 2020. "A hybrid genetic algorithm for the traveling salesman problem with drone," Journal of Heuristics, Springer, vol. 26(2), pages 219-247, April.
    5. Huang, Shan-Huen & Lin, Pei-Chun, 2015. "Vehicle routing–scheduling for municipal waste collection system under the “Keep Trash off the Ground” policy," Omega, Elsevier, vol. 55(C), pages 24-37.
    6. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    7. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    8. C Lee & K Lee & S Park, 2012. "Robust vehicle routing problem with deadlines and travel time/demand uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(9), pages 1294-1306, September.
    9. De Bruecker, Philippe & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon & Demeulemeester, Erik, 2018. "A model enhancement approach for optimizing the integrated shift scheduling and vehicle routing problem in waste collection," European Journal of Operational Research, Elsevier, vol. 266(1), pages 278-290.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christina Hess & Alina G. Dragomir & Karl F. Doerner & Daniele Vigo, 2024. "Waste collection routing: a survey on problems and methods," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(2), pages 399-434, June.
    2. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    3. Gambella, Claudio & Maggioni, Francesca & Vigo, Daniele, 2019. "A stochastic programming model for a tactical solid waste management problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 684-694.
    4. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    5. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
    6. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    7. Ghalehkhondabi, Iman & Maihami, Reza & Ahmadi, Ehsan, 2020. "Optimal pricing and environmental improvement for a hazardous waste disposal supply chain with emission penalties," Utilities Policy, Elsevier, vol. 62(C).
    8. Cui, Hailong & Sošić, Greys, 2019. "Recycling common materials: Effectiveness, optimal decisions, and coordination mechanisms," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1055-1068.
    9. Asif Iqbal & Abdullah Yasar & Abdul-Sattar Nizami & Rafia Haider & Faiza Sharif & Imran Ali Sultan & Amtul Bari Tabinda & Aman Anwer Kedwaii & Muhammad Murtaza Chaudhary, 2022. "Municipal Solid Waste Collection and Haulage Modeling Design for Lahore, Pakistan: Transition toward Sustainability and Circular Economy," Sustainability, MDPI, vol. 14(23), pages 1-39, December.
    10. Wex, Felix & Schryen, Guido & Feuerriegel, Stefan & Neumann, Dirk, 2014. "Emergency response in natural disaster management: Allocation and scheduling of rescue units," European Journal of Operational Research, Elsevier, vol. 235(3), pages 697-708.
    11. Vincent F. Yu & Shih-Wei Lin & Panca Jodiawan & Yu-Chi Lai, 2023. "Solving the Flying Sidekick Traveling Salesman Problem by a Simulated Annealing Heuristic," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    12. Junhu Ruan & Felix T. S. Chan & Xiaofeng Zhao, 2018. "Re-Planning the Intermodal Transportation of Emergency Medical Supplies with Updated Transfer Centers," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    13. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
    14. Pan-Li Zhang & Xiao-Bo Sun & Ji-Quan Wang & Hao-Hao Song & Jin-Ling Bei & Hong-Yu Zhang, 2022. "The Discrete Carnivorous Plant Algorithm with Similarity Elimination Applied to the Traveling Salesman Problem," Mathematics, MDPI, vol. 10(18), pages 1-34, September.
    15. Yves Crama & Michel Grabisch & Silvano Martello, 2022. "Sixty-one surveys in operations research," Annals of Operations Research, Springer, vol. 314(1), pages 5-13, July.
    16. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    17. CASTRO, Marco & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter & GOOS, Peter, 2012. "A simple GRASP+VND for the travelling salesperson problem with hotel selection," Working Papers 2012024, University of Antwerp, Faculty of Business and Economics.
    18. Andrzej Grzybowski, 2009. "A Note On A Single Vehicle And One Destination Routing Problem And Its Game-Theoretic Models," Advanced Logistic systems, University of Miskolc, Department of Material Handling and Logistics, vol. 3(1), pages 71-76, December.
    19. Richard Eglese & Sofoclis Zambirinis, 2018. "Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-17, April.
    20. Hossein Hashemi Doulabi & Gilles Pesant & Louis-Martin Rousseau, 2020. "Vehicle Routing Problems with Synchronized Visits and Stochastic Travel and Service Times: Applications in Healthcare," Transportation Science, INFORMS, vol. 54(4), pages 1053-1072, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:21:y:2023:i:4:d:10.1007_s10288-022-00526-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.