IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v5y2018i1d10.1007_s40745-017-0135-y.html
   My bibliography  Save this article

A Novel Multiview Topic Model to Compute Correlation of Heterogeneous Data

Author

Listed:
  • Jinsheng Shen

    (Fudan University)

  • Mingmin Chi

    (Fudan University)

Abstract

With fast development of Internet technologies and sensor techniques, it is much easier to acquire data from different sources in different dates and times. However, how to compute the correlation of those heterogeneous data is a big challenge for data mining and information retrieval. Here, data feature from one source is called as a view, and the multiview features denote the same data point. In the paper, hidden correlation of two-view features is proposed to construct a Heterogeneous (multiview) Topic Model (HTM). In particular, probabilistic topic model is utilized for different views as usually, generative models provide much richer features when handling high-dimensional data such as texts. Nevertheless, it is necessary to know the form of probability distribution for most existent probabilistic topic models, such as latent Dirichlet allocation. By avoiding the limitation of probabilistic topic model, the HTM is reduced to solving a non-negative matrix tri-factorization problem with certain constraints such that the proposed approach can be used in terms of an arbitrary model.

Suggested Citation

  • Jinsheng Shen & Mingmin Chi, 2018. "A Novel Multiview Topic Model to Compute Correlation of Heterogeneous Data," Annals of Data Science, Springer, vol. 5(1), pages 9-19, March.
  • Handle: RePEc:spr:aodasc:v:5:y:2018:i:1:d:10.1007_s40745-017-0135-y
    DOI: 10.1007/s40745-017-0135-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-017-0135-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-017-0135-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chonghui Guo & Menglin Lu & Wei Wei, 2021. "An Improved LDA Topic Modeling Method Based on Partition for Medium and Long Texts," Annals of Data Science, Springer, vol. 8(2), pages 331-344, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.
    2. Shazia Ghani, 2011. "A re-visit to Minsky after 2007 financial meltdown," Post-Print halshs-01027435, HAL.
    3. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    4. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    5. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    6. Andrew Weinbach & Rodney J. Paul, 2009. "National television coverage and the behavioural bias of bettors: the American college football totals market," International Gambling Studies, Taylor & Francis Journals, vol. 9(1), pages 55-66, April.
    7. Oxelheim, Lars & Rafferty, Michael, 2005. "On the static efficiency of secondary bond markets," Journal of Multinational Financial Management, Elsevier, vol. 15(2), pages 117-135, April.
    8. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    9. Nuruddeen Usman & Kodili Nwanneka & Nduka, 2023. "Announcement Effect of COVID-19 on Cryptocurrencies," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 3(3), pages 1-4.
    10. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    11. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    12. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    13. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    14. Camille Baulant & Nivine Albouz, 2021. "Has financial globalization since 1990 reduced income inequality: the role of rating announcements on the volatility and the returns of the Brazilian Financial Market [Les annonces de notation souv," Working Papers hal-03258994, HAL.
    15. Carlo Rosa & Giovanni Verga, 2006. "The Impact of Central Bank Announcements on Asset Prices in Real Time: Testing the Efficiency of the Euribor Futures Market," CEP Discussion Papers dp0764, Centre for Economic Performance, LSE.
    16. Choi, Gahyun & Park, Kwangyeol & Yi, Eojin & Ahn, Kwangwon, 2023. "Price fairness: Clean energy stocks and the overall market," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Sellin, Peter, 1998. "Monetary Policy and the Stock Market: Theory and Empirical Evidence," Working Paper Series 72, Sveriges Riksbank (Central Bank of Sweden).
    18. Thomas Delcey, 2019. "Samuelson vs Fama on the Efficient Market Hypothesis: The Point of View of Expertise [Samuelson vs Fama sur l’efficience informationnelle des marchés financiers : le point de vue de l’expertise]," Post-Print hal-01618347, HAL.
    19. Spira, Robin, 2024. "How does ESG rating disagreement influence analyst forecast dispersion?," Junior Management Science (JUMS), Junior Management Science e. V., vol. 9(3), pages 1769-1804.
    20. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2016. "Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index," Papers 1605.07278, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:5:y:2018:i:1:d:10.1007_s40745-017-0135-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.