IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v11y2024i3d10.1007_s40745-023-00486-0.html
   My bibliography  Save this article

Bayesian Learning of Personalized Longitudinal Biomarker Trajectory

Author

Listed:
  • Shouhao Zhou

    (Pennsylvinia State University)

  • Xuelin Huang

    (University of Texas M.D. Anderson Cancer Center)

  • Chan Shen

    (Pennsylvinia State University
    Pennsylvinia State University)

  • Hagop M. Kantarjian

    (University of Texas M.D. Anderson Cancer Center)

Abstract

This work concerns the effective personalized prediction of longitudinal biomarker trajectory, motivated by a study of cancer targeted therapy for patients with chronic myeloid leukemia (CML). Continuous monitoring with a confirmed biomarker of residual disease is a key component of CML management for early prediction of disease relapse. However, the longitudinal biomarker measurements have highly heterogeneous trajectories between subjects (patients) with various shapes and patterns. It is believed that the trajectory is clinically related to the development of treatment resistance, but there was limited knowledge about the underlying mechanism. To address the challenge, we propose a novel Bayesian approach to modeling the distribution of subject-specific longitudinal trajectories. It exploits flexible Bayesian learning to accommodate complex changing patterns over time and non-linear covariate effects, and allows for real-time prediction of both in-sample and out-of-sample subjects. The generated information can help make clinical decisions, and consequently enhance the personalized treatment management of precision medicine.

Suggested Citation

  • Shouhao Zhou & Xuelin Huang & Chan Shen & Hagop M. Kantarjian, 2024. "Bayesian Learning of Personalized Longitudinal Biomarker Trajectory," Annals of Data Science, Springer, vol. 11(3), pages 1031-1050, June.
  • Handle: RePEc:spr:aodasc:v:11:y:2024:i:3:d:10.1007_s40745-023-00486-0
    DOI: 10.1007/s40745-023-00486-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-023-00486-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-023-00486-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, June.
    2. Yu, Menggang & Taylor, Jeremy M.G. & Sandler, Howard M., 2008. "Individual Prediction in Prostate Cancer Studies Using a Joint Longitudinal SurvivalCure Model," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 178-187, March.
    3. Crainiceanu, Ciprian M. & Ruppert, David & Wand, Matthew P., 2005. "Bayesian Analysis for Penalized Spline Regression Using WinBUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i14).
    4. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    5. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    6. Figueroa-Zúñiga, Jorge I. & Arellano-Valle, Reinaldo B. & Ferrari, Silvia L.P., 2013. "Mixed beta regression: A Bayesian perspective," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 137-147.
    7. Dimitris Rizopoulos & Laura A. Hatfield & Bradley P. Carlin & Johanna J. M. Takkenberg, 2014. "Combining Dynamic Predictions From Joint Models for Longitudinal and Time-to-Event Data Using Bayesian Model Averaging," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1385-1397, December.
    8. Patrick Royston & Douglas G. Altman, 1994. "Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(3), pages 429-453, September.
    9. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    10. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, June.
    11. Inyoung Kim & Noah D. Cohen & Raymond J. Carroll, 2003. "Semiparametric Regression Splines in Matched Case-Control Studies," Biometrics, The International Biometric Society, vol. 59(4), pages 1158-1169, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Qian & Danh V. Nguyen & Esra Kürüm & Connie M. Rhee & Sudipto Banerjee & Yihao Li & Damla Şentürk, 2024. "Multivariate Varying Coefficient Spatiotemporal Model," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 761-786, December.
    2. Yonghui Liu & Jiawei Lu & Gilberto A. Paula & Shuangzhe Liu, 2025. "Bayesian diagnostics in a partially linear model with first-order autoregressive skew-normal errors," Computational Statistics, Springer, vol. 40(2), pages 1021-1051, February.
    3. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    4. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    5. Kalogridis, Ioannis & Van Aelst, Stefan, 2023. "Robust penalized estimators for functional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    6. Goepp, Vivien & Bouaziz, Olivier & Nuel, Grégory, 2025. "Spline regression with automatic knot selection," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
    7. Yukun Zhang & Haocheng Li & Sarah Kozey Keadle & Charles E. Matthews & Raymond J. Carroll, 2019. "A Review of Statistical Analyses on Physical Activity Data Collected from Accelerometers," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 465-476, July.
    8. Morteza Amini & Mahdi Roozbeh & Nur Anisah Mohamed, 2024. "Separation of the Linear and Nonlinear Covariates in the Sparse Semi-Parametric Regression Model in the Presence of Outliers," Mathematics, MDPI, vol. 12(2), pages 1-17, January.
    9. Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
    10. Hamid Mraoui & Ahmed El-Alaoui & Souad Bechrouri & Nezha Mohaoui & Abdelilah Monir, 2025. "Two-stage regression spline modeling based on local polynomial kernel regression," Computational Statistics, Springer, vol. 40(1), pages 383-403, January.
    11. Afonso, António & Alves, José & Beck, Krzysztof & Jackson, Karen, 2024. "Financial, institutional, and macroeconomic determinants of cross-country portfolio equity flows: The case of developed countries," Economic Modelling, Elsevier, vol. 141(C).
    12. Mark J. Meyer & Haobo Cheng & Katherine Hobbs Knutson, 2023. "Bayesian Analysis of Multivariate Matched Proportions with Sparse Response," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 490-509, July.
    13. Giancarlo Aquila & Lucas Barros Scianni Morais & Victor Augusto Durães de Faria & José Wanderley Marangon Lima & Luana Medeiros Marangon Lima & Anderson Rodrigo de Queiroz, 2023. "An Overview of Short-Term Load Forecasting for Electricity Systems Operational Planning: Machine Learning Methods and the Brazilian Experience," Energies, MDPI, vol. 16(21), pages 1-35, November.
    14. Nolan, Tui H. & Richardson, Sylvia & Ruffieux, Hélène, 2025. "Efficient Bayesian functional principal component analysis of irregularly-observed multivariate curves," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    15. Ioannis Kalogridis & Gerda Claeskens & Stefan Aelst, 2023. "Robust and efficient estimation of nonparametric generalized linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 1055-1078, September.
    16. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    17. Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
    18. Zanin, Luca, 2023. "A flexible estimation of sectoral portfolio exposure to climate transition risks in the European stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    19. Wood, Simon N., 2016. "Just Another Gibbs Additive Modeler: Interfacing JAGS and mgcv," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i07).
    20. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:11:y:2024:i:3:d:10.1007_s40745-023-00486-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.