IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v346y2025i3d10.1007_s10479-025-06485-z.html
   My bibliography  Save this article

An exact approach for bi-objective non-identical batch processing machines scheduling

Author

Listed:
  • Shaoxiang Zheng

    (Kunming University of Science and Technology)

  • Naiming Xie

    (Institute of Grey System Studies, Nanjing University of Aeronautics and Astronautics
    Nanjing University of Aeronautics and Astronautics)

  • Qiao Wu

    (Nanjing University of Posts and Telecommunications)

Abstract

Batch scheduling aims to allocate jobs into several batches on batch-processing machines, and thus increases the production efficiency and has pervasive applications. This paper investigates a novel batch-processing machine scheduling problem, in which non-identical machines are capable of processing a batch of jobs simultaneously only if the knapsack constraints are fulfilled. The objectives are to minimize makespan and total energy consumption. The mixed-integer linear programming (MILP) is established, and an exact algorithm is then proposed to tackle such a bi-objective optimization problem. In each step, the makespan is treated as a $$\epsilon $$ ϵ -constraint, and the problem can be thus regarded as a non-identical batch processing machine scheduling problem with a common deadline (NBPMP-DL), aiming to minimize the total energy consumption. A branch-and-price approach along with some acceleration strategies is devised to solve NBPMP-DL efficiently. The novel aspects of our branch-and-price algorithm are the introduction of the new branching scheme, the design of the label-setting method and the branch-and-bound algorithm for the pricing problem. In computational experiments, the presented method’s performance is tested on randomly generated instances, and the results show that, on average, they outperform the off-the-shelf solver and some state-of-art algorithms from literature in a statistical sense.

Suggested Citation

  • Shaoxiang Zheng & Naiming Xie & Qiao Wu, 2025. "An exact approach for bi-objective non-identical batch processing machines scheduling," Annals of Operations Research, Springer, vol. 346(3), pages 2307-2347, March.
  • Handle: RePEc:spr:annopr:v:346:y:2025:i:3:d:10.1007_s10479-025-06485-z
    DOI: 10.1007/s10479-025-06485-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-025-06485-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-025-06485-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damodaran, Purushothaman & Kumar Manjeshwar, Praveen & Srihari, Krishnaswami, 2006. "Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 103(2), pages 882-891, October.
    2. Yin, Yunqiang & Cheng, T.C.E. & Hsu, Chou-Jung & Wu, Chin-Chia, 2013. "Single-machine batch delivery scheduling with an assignable common due window," Omega, Elsevier, vol. 41(2), pages 216-225.
    3. Jia, Zhao-hong & Li, Kai & Leung, Joseph Y.-T., 2015. "Effective heuristic for makespan minimization in parallel batch machines with non-identical capacities," International Journal of Production Economics, Elsevier, vol. 169(C), pages 1-10.
    4. Samir Elhedhli & Lingzi Li & Mariem Gzara & Joe Naoum-Sawaya, 2011. "A Branch-and-Price Algorithm for the Bin Packing Problem with Conflicts," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 404-415, August.
    5. Wei, Lijun & Lai, Minghui & Lim, Andrew & Hu, Qian, 2020. "A branch-and-price algorithm for the two-dimensional vector packing problem," European Journal of Operational Research, Elsevier, vol. 281(1), pages 25-35.
    6. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    7. Pei, Jun & Liu, Xinbao & Fan, Wenjuan & Pardalos, Panos M. & Lu, Shaojun, 2019. "A hybrid BA-VNS algorithm for coordinated serial-batching scheduling with deteriorating jobs, financial budget, and resource constraint in multiple manufacturers," Omega, Elsevier, vol. 82(C), pages 55-69.
    8. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    9. Li, Xiangyong & Wei, Kai & Guo, Zhaoxia & Wang, Wei & Aneja, Y.P., 2021. "An exact approach for the service network design problem with heterogeneous resource constraints," Omega, Elsevier, vol. 102(C).
    10. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    11. Li, Shuguang, 2017. "Approximation algorithms for scheduling jobs with release times and arbitrary sizes on batch machines with non-identical capacities," European Journal of Operational Research, Elsevier, vol. 263(3), pages 815-826.
    12. Gao, Yuan & Schmidt, Marie & Yang, Lixing & Gao, Ziyou, 2020. "A branch-and-price approach for trip sequence planning of high-speed train units," Omega, Elsevier, vol. 92(C).
    13. Husseinzadeh Kashan, Ali & Ozturk, Onur, 2022. "Improved MILP formulation equipped with valid inequalities for scheduling a batch processing machine with non-identical job sizes," Omega, Elsevier, vol. 112(C).
    14. Zhou, Shengchao & Liu, Ming & Chen, Huaping & Li, Xueping, 2016. "An effective discrete differential evolution algorithm for scheduling uniform parallel batch processing machines with non-identical capacities and arbitrary job sizes," International Journal of Production Economics, Elsevier, vol. 179(C), pages 1-11.
    15. Wang, Dujuan & Yin, Yunqiang & Cheng, T.C.E., 2018. "Parallel-machine rescheduling with job unavailability and rejection," Omega, Elsevier, vol. 81(C), pages 246-260.
    16. Qiu, Yuzhuo & Qiao, Jun & Pardalos, Panos M., 2017. "A branch-and-price algorithm for production routing problems with carbon cap-and-trade," Omega, Elsevier, vol. 68(C), pages 49-61.
    17. Sophie N. Parragh & Fabien Tricoire, 2019. "Branch-and-Bound for Bi-objective Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 805-822, October.
    18. Sune Lauth Gadegaard & Lars Relund Nielsen & Matthias Ehrgott, 2019. "Bi-objective Branch-and-Cut Algorithms Based on LP Relaxation and Bound Sets," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 790-804, October.
    19. Muter, İbrahim, 2020. "Exact algorithms to minimize makespan on single and parallel batch processing machines," European Journal of Operational Research, Elsevier, vol. 285(2), pages 470-483.
    20. Zhou, Shengchao & Jin, Mingzhou & Du, Ni, 2020. "Energy-efficient scheduling of a single batch processing machine with dynamic job arrival times," Energy, Elsevier, vol. 209(C).
    21. Li, Chongshou & Gong, Lijun & Luo, Zhixing & Lim, Andrew, 2019. "A branch-and-price-and-cut algorithm for a pickup and delivery problem in retailing," Omega, Elsevier, vol. 89(C), pages 71-91.
    22. Liu, Ming & Yang, Xuenan & Chu, Feng & Zhang, Jiantong & Chu, Chengbin, 2020. "Energy-oriented bi-objective optimization for the tempered glass scheduling," Omega, Elsevier, vol. 90(C).
    23. Hu, Qian & Zhu, Wenbin & Qin, Hu & Lim, Andrew, 2017. "A branch-and-price algorithm for the two-dimensional vector packing problem with piecewise linear cost function," European Journal of Operational Research, Elsevier, vol. 260(1), pages 70-80.
    24. Zhou, Shengchao & Xie, Jianhui & Du, Ni & Pang, Yan, 2018. "A random-keys genetic algorithm for scheduling unrelated parallel batch processing machines with different capacities and arbitrary job sizes," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 254-268.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    2. Husseinzadeh Kashan, Ali & Ozturk, Onur, 2022. "Improved MILP formulation equipped with valid inequalities for scheduling a batch processing machine with non-identical job sizes," Omega, Elsevier, vol. 112(C).
    3. Zhang, Han & Li, Kai & Jia, Zhao-hong & Chu, Chengbin, 2023. "Minimizing total completion time on non-identical parallel batch machines with arbitrary release times using ant colony optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1024-1046.
    4. Zhou, Shengchao & Xie, Jianhui & Du, Ni & Pang, Yan, 2018. "A random-keys genetic algorithm for scheduling unrelated parallel batch processing machines with different capacities and arbitrary job sizes," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 254-268.
    5. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    6. Xin Xiao & Bin Ji & Samson S. Yu & Guohua Wu, 2024. "A tabu-based adaptive large neighborhood search for scheduling unrelated parallel batch processing machines with non-identical job sizes and dynamic job arrivals," Flexible Services and Manufacturing Journal, Springer, vol. 36(2), pages 409-452, June.
    7. Tian, Zheng & Zheng, Li, 2024. "Single machine parallel-batch scheduling under time-of-use electricity prices: New formulations and optimisation approaches," European Journal of Operational Research, Elsevier, vol. 312(2), pages 512-524.
    8. Chen, Yanru & Gao, Mujin & Zhang, Zongcheng & Li, Junheng & Wahab, M.I.M. & Jiang, Yangsheng, 2025. "Contextual bandits learning-based branch-and-price-and-cut algorithm for the two-dimensional vector packing problem with conflicts and time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 193(C).
    9. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2022. "Integer Optimization Model and Algorithm for the Stem Cell Culturing Problem," Omega, Elsevier, vol. 108(C).
    10. Wang, Ting & Hu, Qian & Lim, Andrew, 2022. "An exact algorithm for two-dimensional vector packing problem with volumetric weight and general costs," European Journal of Operational Research, Elsevier, vol. 300(1), pages 20-34.
    11. A. Alfieri & A. Druetto & A. Grosso & F. Salassa, 2021. "Column generation for minimizing total completion time in a parallel-batching environment," Journal of Scheduling, Springer, vol. 24(6), pages 569-588, December.
    12. Muter, İbrahim, 2020. "Exact algorithms to minimize makespan on single and parallel batch processing machines," European Journal of Operational Research, Elsevier, vol. 285(2), pages 470-483.
    13. Zhou, Shengchao & Liu, Ming & Chen, Huaping & Li, Xueping, 2016. "An effective discrete differential evolution algorithm for scheduling uniform parallel batch processing machines with non-identical capacities and arbitrary job sizes," International Journal of Production Economics, Elsevier, vol. 179(C), pages 1-11.
    14. Liman Feng & Guo Chen & Shengchao Zhou & Xiaojun Zhou & Mingzhou Jin, 2024. "An Energy-Efficient Unrelated Parallel Machine Scheduling Problem with Batch Processing and Time-of-Use Electricity Prices," Mathematics, MDPI, vol. 12(3), pages 1-14, January.
    15. David Bergman & Merve Bodur & Carlos Cardonha & Andre A. Cire, 2022. "Network Models for Multiobjective Discrete Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 990-1005, March.
    16. Wang, Haibo & Alidaee, Bahram, 2019. "Effective heuristic for large-scale unrelated parallel machines scheduling problems," Omega, Elsevier, vol. 83(C), pages 261-274.
    17. Fritz Bökler & Sophie N. Parragh & Markus Sinnl & Fabien Tricoire, 2024. "An outer approximation algorithm for generating the Edgeworth–Pareto hull of multi-objective mixed-integer linear programming problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(1), pages 263-290, August.
    18. Zhang, Guowei & Jia, Ning & Zhu, Ning & Adulyasak, Yossiri & Ma, Shoufeng, 2023. "Robust drone selective routing in humanitarian transportation network assessment," European Journal of Operational Research, Elsevier, vol. 305(1), pages 400-428.
    19. Nathan Adelgren & Akshay Gupte, 2022. "Branch-and-Bound for Biobjective Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 909-933, March.
    20. Zhang, Hongbin & Yang, Yu & Wu, Feng, 2024. "Scheduling a set of jobs with convex piecewise linear cost functions on a single-batch-processing machine," Omega, Elsevier, vol. 122(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:346:y:2025:i:3:d:10.1007_s10479-025-06485-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.