Evolution of neural architectures for financial forecasting: a note on data incompatibility during crisis periods
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-024-06098-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ryan Sullivan & Allan Timmermann & Halbert White, 1999.
"Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap,"
Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
- Sullivan, Ryan & Timmermann, Allan & White, Halbert, 1998. "Data snooping, technical trading, rule performance, and the bootstrap," LSE Research Online Documents on Economics 119144, London School of Economics and Political Science, LSE Library.
- Sullivan, Ryan & Timmermann, Allan G & White, Halbert, 1998. "Data-Snooping, Technical Trading Rule Performance and the Bootstrap," CEPR Discussion Papers 1976, C.E.P.R. Discussion Papers.
- Allan Timmermann & Halbert White & Ryan Sullivan, 1998. "Data-Snooping, Technical Trading, Rule Performance and the Bootstrap," FMG Discussion Papers dp303, Financial Markets Group.
- Georgios Sermpinis & Andreas Karathanasopoulos & Rafael Rosillo & David Fuente, 2021. "Neural networks in financial trading," Annals of Operations Research, Springer, vol. 297(1), pages 293-308, February.
- Graham Smith, 2012. "The changing and relative efficiency of European emerging stock markets," The European Journal of Finance, Taylor & Francis Journals, vol. 18(8), pages 689-708, September.
- Faizal Hafiz & Jan Broekaert & Davide Torre & Akshya Swain, 2024. "A multi-criteria approach to evolve sparse neural architectures for stock market forecasting," Annals of Operations Research, Springer, vol. 336(1), pages 1219-1263, May.
- Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
- Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Faizal Hafiz & Jan Broekaert & Davide Torre & Akshya Swain, 2024. "A multi-criteria approach to evolve sparse neural architectures for stock market forecasting," Annals of Operations Research, Springer, vol. 336(1), pages 1219-1263, May.
- Nartea, Gilbert V. & Valera, Harold Glenn A. & Valera, Maria Luisa G., 2021.
"Mean reversion in Asia-Pacific stock prices: New evidence from quantile unit root tests,"
International Review of Economics & Finance, Elsevier, vol. 73(C), pages 214-230.
- Gilbert V. Nartea & Harold Glenn A. Valera & Maria Luisa G. Valera, 2019. "Mean Reversion in Asia-Pacific Stock Prices: New Evidence from Quantile Unit Root Tests," Working Papers in Economics 19/16, University of Canterbury, Department of Economics and Finance.
- Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
- Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
- Jacek Karasinski, 2022. "The Impact of the COVID-19 Outbreak on the Weak-Form Informational Efficiency of the Warsaw Stock Exchange (Wplyw wybuchu epidemii COVID-19 na efektywnosc informacyjna Gieldy Papierow Wartosciowych w ," Research Reports, University of Warsaw, Faculty of Management, vol. 2(37), pages 15-28.
- Urquhart, Andrew & Gebka, Bartosz & Hudson, Robert, 2015. "How exactly do markets adapt? Evidence from the moving average rule in three developed markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 127-147.
- Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
- Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857, August.
- Diniz-Maganini, Natalia & Diniz, Eduardo H. & Rasheed, Abdul A., 2021. "Bitcoin’s price efficiency and safe haven properties during the COVID-19 pandemic: A comparison," Research in International Business and Finance, Elsevier, vol. 58(C).
- Edwin D. Maberly & Daniel F. Waggoner, 2000. "Closing the question on the continuation of turn-of-the-month effects: evidence from the S&P 500 Index futures contract," FRB Atlanta Working Paper 2000-11, Federal Reserve Bank of Atlanta.
- Todea, Alexandru, 2016. "Cross-correlations between volatility, volatility persistence and stock market integration: the case of emergent stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 208-215.
- Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2008.
"Economic and financial crises and the predictability of U.S. stock returns,"
Journal of Empirical Finance, Elsevier, vol. 15(3), pages 468-480, June.
- Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2006. "Economic and Financial Crises and the Predictability of U.S. Stock Returns," MPRA Paper 561, University Library of Munich, Germany.
- Ma-Ju Wang, 2014. "A Study on the Differences in Adopting Cash Refund Capital Reduction and Stock Repurchase By Companies in Bull and Bear Stock Markets," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(9), pages 1237-1253, September.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Chung, San-Lin & Hung, Chi-Hsiou & Yeh, Chung-Ying, 2012. "When does investor sentiment predict stock returns?," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 217-240.
- Zakamulin, Valeriy & Giner, Javier, 2022. "Time series momentum in the US stock market: Empirical evidence and theoretical analysis," International Review of Financial Analysis, Elsevier, vol. 82(C).
- Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.
- Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
- Jin, Xiaoye, 2022. "Testing technical trading strategies on China's equity ETFs: A skewness perspective," Emerging Markets Review, Elsevier, vol. 51(PA).
- Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
More about this item
Keywords
Co-evolution; Feature selection; Financial crisis; Financial forecasting; Multi-criteria decision making; Neural architecture search;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:346:y:2025:i:2:d:10.1007_s10479-024-06098-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.