IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v342y2024i1d10.1007_s10479-023-05219-3.html
   My bibliography  Save this article

An optimization model with a lagrangian relaxation algorithm for artificial internet of things-enabled sustainable circular supply chain networks

Author

Listed:
  • Madjid Tavana

    (La Salle University
    University of Paderborn)

  • Arash Khalili Nasr

    (Sharif University of Technology)

  • Francisco J. Santos-Arteaga

    (Universidad Complutense de Madrid)

  • Esmaeel Saberi

    (Tarbiat Modares University)

  • Hassan Mina

    (Shanghai Maritime University)

Abstract

Circular supply chain (CSC) networks improve sustainability and create socially responsible enterprises through recycling, harvesting, and refurbishing. This study develops a Lagrangian relaxation (LR) algorithm for solving location-inventory-routing (LIR) problems with heterogeneous vehicles in multi-period and multi-product sustainable CSC networks. The proposed Artificial Internet of Things (AIoT) enabled sustainable CSC is designed to increase network performance and create a secure and traceable environment. For the first time, an LR algorithm is proposed to solve the LIR problems in an AIoT-enabled CSC network with storage, backorder shortage, split-delivery, and time window potentials. Sixteen small- and medium-size simulated problems were produced to assess the performance of the proposed algorithm relative to the GAMS software. The results show the proposed algorithm can solve the small- and medium-size problems as effectively as GAMS software but faster and more efficiently. In addition, eight large-size simulation problems were produced and solved by the algorithm. While the GAMS software failed to solve the large-size problems, the LR algorithm solved them efficiently and successfully.

Suggested Citation

  • Madjid Tavana & Arash Khalili Nasr & Francisco J. Santos-Arteaga & Esmaeel Saberi & Hassan Mina, 2024. "An optimization model with a lagrangian relaxation algorithm for artificial internet of things-enabled sustainable circular supply chain networks," Annals of Operations Research, Springer, vol. 342(1), pages 767-802, November.
  • Handle: RePEc:spr:annopr:v:342:y:2024:i:1:d:10.1007_s10479-023-05219-3
    DOI: 10.1007/s10479-023-05219-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05219-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05219-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Huimin & Zhou, Xuesong & Tian, Xiaopeng, 2018. "Coordinating assignment and routing decisions in transit vehicle schedules: A variable-splitting Lagrangian decomposition approach for solution symmetry breaking," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 70-101.
    2. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    3. Chen Chao & Tian Zhihui & Yao Baozhen, 2019. "Optimization of two-stage location–routing–inventory problem with time-windows in food distribution network," Annals of Operations Research, Springer, vol. 273(1), pages 111-134, February.
    4. Shahriar Akter & Katina Michael & Muhammad Rajib Uddin & Grace McCarthy & Mahfuzur Rahman, 2022. "Transforming business using digital innovations: the application of AI, blockchain, cloud and data analytics," Annals of Operations Research, Springer, vol. 308(1), pages 7-39, January.
    5. Shiva Zandkarimkhani & Hassan Mina & Mehdi Biuki & Kannan Govindan, 2020. "A chance constrained fuzzy goal programming approach for perishable pharmaceutical supply chain network design," Annals of Operations Research, Springer, vol. 295(1), pages 425-452, December.
    6. Zhao, Jiahong & Ke, Ginger Y., 2017. "Incorporating inventory risks in location-routing models for explosive waste management," International Journal of Production Economics, Elsevier, vol. 193(C), pages 123-136.
    7. Purva Grover & Arpan Kumar Kar & Yogesh K. Dwivedi, 2022. "Understanding artificial intelligence adoption in operations management: insights from the review of academic literature and social media discussions," Annals of Operations Research, Springer, vol. 308(1), pages 177-213, January.
    8. Zhang, Zhi-Hai & Unnikrishnan, Avinash, 2016. "A coordinated location-inventory problem in closed-loop supply chain," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 127-148.
    9. Miranda, Pablo A. & Garrido, Rodrigo A., 2008. "Valid inequalities for Lagrangian relaxation in an inventory location problem with stochastic capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(1), pages 47-65, January.
    10. Marshall L. Fisher, 2004. "The Lagrangian Relaxation Method for Solving Integer Programming Problems," Management Science, INFORMS, vol. 50(12_supple), pages 1861-1871, December.
    11. Hamdan, Bayan & Diabat, Ali, 2020. "Robust design of blood supply chains under risk of disruptions using Lagrangian relaxation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    12. Yang, Senyan & Ning, Lianju & Shang, Pan & (Carol) Tong, Lu, 2020. "Augmented Lagrangian relaxation approach for logistics vehicle routing problem with mixed backhauls and time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    13. Zhang, Zhi-Hai & Jiang, Hai & Pan, Xunzhang, 2012. "A Lagrangian relaxation based approach for the capacitated lot sizing problem in closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 140(1), pages 249-255.
    14. Zheng, Xiaojin & Yin, Meixia & Zhang, Yanxia, 2019. "Integrated optimization of location, inventory and routing in supply chain network design," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 1-20.
    15. Sumit Kunnumkal & Kalyan Talluri, 2019. "A strong Lagrangian relaxation for general discrete-choice network revenue management," Computational Optimization and Applications, Springer, vol. 73(1), pages 275-310, May.
    16. Shivam Gupta & Sachin Modgil & Samadrita Bhattacharyya & Indranil Bose, 2022. "Artificial intelligence for decision support systems in the field of operations research: review and future scope of research," Annals of Operations Research, Springer, vol. 308(1), pages 215-274, January.
    17. Marshall L. Fisher, 2004. "Comments on ÜThe Lagrangian Relaxation Method for Solving Integer Programming ProblemsÝ," Management Science, INFORMS, vol. 50(12_supple), pages 1872-1874, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qihuan & Wang, Ziteng & Huang, Min & Wang, Huihui & Wang, Xingwei & Fang, Shu-Cherng, 2025. "Collaborative supply chain network design under demand uncertainty: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 279(C).
    2. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    3. Tran, Trung Hieu & Nguyen, Thu Ba T. & Le, Hoa Sen T. & Phung, Duc Chinh, 2024. "Formulation and solution technique for agricultural waste collection and transport network design," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1152-1169.
    4. Mark Rodgers & Sayan Mukherjee & Benjamin Melamed & Alok Baveja & Ajai Kapoor, 2024. "Solving business problems: the business-driven data-supported process," Annals of Operations Research, Springer, vol. 332(1), pages 705-741, January.
    5. Lihua Liu & Lai Soon Lee & Hsin-Vonn Seow & Chuei Yee Chen, 2022. "Logistics Center Location-Inventory-Routing Problem Optimization: A Systematic Review Using PRISMA Method," Sustainability, MDPI, vol. 14(23), pages 1-39, November.
    6. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    7. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2015. "A location-inventory-pricing model in a supply chain distribution network with price-sensitive demands and inventory-capacity constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 238-255.
    8. Yang, Hengfei & Yang, Yuze & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang & Hu, Hai, 2024. "A scenario-based robust approach for joint planning of multi-blood product logistics and multi-casualty type evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    9. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    10. Dollevoet, Twan & van Essen, J. Theresia & Glorie, Kristiaan M., 2018. "Solution methods for the tray optimization problem," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1070-1084.
    11. Alexandre Belloni & Mitchell J. Lovett & William Boulding & Richard Staelin, 2012. "Optimal Admission and Scholarship Decisions: Choosing Customized Marketing Offers to Attract a Desirable Mix of Customers," Marketing Science, INFORMS, vol. 31(4), pages 621-636, July.
    12. Zhizhu Lai & Qun Yue & Zheng Wang & Dongmei Ge & Yulong Chen & Zhihong Zhou, 2022. "The min-p robust optimization approach for facility location problem under uncertainty," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1134-1160, September.
    13. Jiang, Yangsheng & Huangfu, Junjie & Xiao, Guosheng & Zhang, Yongxiang & Yao, Zhihong, 2025. "Energy-efficient trajectory design of connected automated vehicles platoon: A unified modeling approach using space-time-speed grid networks," Energy, Elsevier, vol. 314(C).
    14. Junming Liu & Weiwei Chen & Jingyuan Yang & Hui Xiong & Can Chen, 2022. "Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 769-789, March.
    15. Zheng, Jianfeng & Meng, Qiang & Sun, Zhuo, 2014. "Impact analysis of maritime cabotage legislations on liner hub-and-spoke shipping network design," European Journal of Operational Research, Elsevier, vol. 234(3), pages 874-884.
    16. Vasile BRĂTIAN, 2018. "Portfolio Optimization. Application of the Markowitz Model Using Lagrange and Profitability Forecast," Expert Journal of Economics, Sprint Investify, vol. 6(1), pages 26-34.
    17. Karademir, Cigdem & Beirigo, Breno A. & Atasoy, Bilge, 2025. "A two-echelon multi-trip vehicle routing problem with synchronization for an integrated water- and land-based transportation system," European Journal of Operational Research, Elsevier, vol. 322(2), pages 480-499.
    18. Mingqiang Yin & Min Huang & Xiaohu Qian & Dazhi Wang & Xingwei Wang & Loo Hay Lee, 2023. "Fourth-party logistics network design with service time constraint under stochastic demand," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1203-1227, March.
    19. Miguel A. Lejeune & John Turner, 2019. "Planning Online Advertising Using Gini Indices," Operations Research, INFORMS, vol. 67(5), pages 1222-1245, September.
    20. Claudio Gambella & Joe Naoum-Sawaya & Bissan Ghaddar, 2018. "The Vehicle Routing Problem with Floating Targets: Formulation and Solution Approaches," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 554-569, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:342:y:2024:i:1:d:10.1007_s10479-023-05219-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.