IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v338y2024i1d10.1007_s10479-023-05489-x.html
   My bibliography  Save this article

A distributionally robust approach for the two-machine permutation flow shop scheduling

Author

Listed:
  • Haimin Lu

    (Zhejiang University of Technology)

  • Zhi Pei

    (Zhejiang University of Technology)

Abstract

We consider the two-machine permutation flow shop scheduling problem with uncertain job processing time, which is sampled from no specific distribution type. For the ease of discussion, an ambiguity set with a priori mean and support set information is constructed. We then introduce a distributionally robust optimization (DRO) perspective to handle the uncertainty. To the best of our knowledge, this is the first time that a DRO method is applied to this problem setting. Given that the original DRO model is nonlinear and intractable in nature, we first reformulate the inner maximization problem into a linear programming model with a fixed sequence, based on the duality theory and optimality conditions. By including the sequence decision, we further transform it into an equivalent mixed-integer linear programming (MILP) problem via incorporating the valid lower and upper bounds and McCormick inequalities. The obtained MILP could be solved to optimality with the off-the-shelf commercial solvers. In the numerical study, it is demonstrated that the DRO-based model could effectively solve the large scale instances with up to 100 jobs optimally within 30 s. Compared with the SLP, DRO model always triumphs on the worst-case indicator. And as the problem scale increases, the DRO model gradually outperforms the SLP in terms of the Up-90% and Up-75% indicators. Furthermore, the optimal sequence obtained by the deterministic model is less stable than the DRO model, which can enhance the robustness of the manufacturing system against processing uncertainty.

Suggested Citation

  • Haimin Lu & Zhi Pei, 2024. "A distributionally robust approach for the two-machine permutation flow shop scheduling," Annals of Operations Research, Springer, vol. 338(1), pages 709-739, July.
  • Handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05489-x
    DOI: 10.1007/s10479-023-05489-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05489-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05489-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:338:y:2024:i:1:d:10.1007_s10479-023-05489-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.