IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v337y2024i1d10.1007_s10479-024-05854-4.html
   My bibliography  Save this article

A robust multi-project scheduling problem under a resource dedication-transfer policy

Author

Listed:
  • Yan Zhao

    (Zhongnan University of Economics and Law)

  • Xuejun Hu

    (Hunan University)

  • Jianjiang Wang

    (National University of Defense Technology)

  • Nanfang Cui

    (Huazhong University of Science and Technology)

Abstract

In multi-project management, effectively allocating limited resources to projects is crucial for ensuring the success of the project portfolio and timely delivery. There are two approaches to managing renewable resources based on project execution environment and resource characteristics: resource sharing and resource dedication. This study explores a novel resource dedication-transfer policy, where renewable resources are dedicated to each project during execution and can be transferred to other projects once the corresponding project is completed. Additionally, real-world multi-project scheduling often faces uncertainties, with the most common issue being varying durations of activities. To address this, a hierarchical multi-objective optimization model is proposed under the resource dedication-transfer policy. This model aims to allocate dedicated resources to the project portfolio at a tactical level and schedule individual activities at an operational level. The specific objectives include minimizing the total weighted tardiness of all projects, minimizing the total fluctuating costs of resources, and maximizing solution robustness in the presence of activity duration variabilities. The proposed solution methodologies include an adjusted large neighborhood search (ALNS) and a customized NSGA-II algorithm. Both algorithms employ a hybrid coding scheme of “project-buffer-resource-activity” list to represent feasible solutions. Specially, the ALNS introduces new destroy-repair neighborhood operators and a hypervolume-based selection criterion to enhance its performance. Experimental results demonstrate that while both algorithms have their advantages for small-scale instances, the ALNS is more effective for large-scale instances. Finally, the derived Pareto solutions from the proposed method are further evaluated through a simulation of multi-project execution under different levels of activity duration variabilities.

Suggested Citation

  • Yan Zhao & Xuejun Hu & Jianjiang Wang & Nanfang Cui, 2024. "A robust multi-project scheduling problem under a resource dedication-transfer policy," Annals of Operations Research, Springer, vol. 337(1), pages 425-457, June.
  • Handle: RePEc:spr:annopr:v:337:y:2024:i:1:d:10.1007_s10479-024-05854-4
    DOI: 10.1007/s10479-024-05854-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-05854-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-05854-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yangyang Liang & Nanfang Cui & Xuejun Hu & Erik Demeulemeester, 2020. "The integration of resource allocation and time buffering for bi-objective robust project scheduling," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 3839-3854, July.
    2. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    3. Anıl Can & Gündüz Ulusoy, 2014. "Multi-project scheduling with two-stage decomposition," Annals of Operations Research, Springer, vol. 217(1), pages 95-116, June.
    4. Chen, Zhi & Demeulemeester, Erik & Bai, Sijun & Guo, Yuntao, 2018. "Efficient priority rules for the stochastic resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 270(3), pages 957-967.
    5. Van de Vonder, Stijn & Demeulemeester, Erik & Herroelen, Willy, 2008. "Proactive heuristic procedures for robust project scheduling: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 189(3), pages 723-733, September.
    6. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    7. Alexander Kiefer & Richard F. Hartl & Alexander Schnell, 2017. "Adaptive large neighborhood search for the curriculum-based course timetabling problem," Annals of Operations Research, Springer, vol. 252(2), pages 255-282, May.
    8. He, Naihui & Zhang, David Z. & Yuce, Baris, 2022. "Integrated multi-project planning and scheduling - a multiagent approach," European Journal of Operational Research, Elsevier, vol. 302(2), pages 688-699.
    9. Morteza Davari & Erik Demeulemeester, 2019. "Important classes of reactions for the proactive and reactive resource-constrained project scheduling problem," Annals of Operations Research, Springer, vol. 274(1), pages 187-210, March.
    10. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    11. Beşikci, Umut & Bilge, Ümit & Ulusoy, Gündüz, 2015. "Multi-mode resource constrained multi-project scheduling and resource portfolio problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 22-31.
    12. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
    13. Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
    14. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    15. Browning, Tyson R. & Yassine, Ali A., 2010. "Resource-constrained multi-project scheduling: Priority rule performance revisited," International Journal of Production Economics, Elsevier, vol. 126(2), pages 212-228, August.
    16. Erik Demeulemeester & Willy Herroelen, 1992. "A Branch-and-Bound Procedure for the Multiple Resource-Constrained Project Scheduling Problem," Management Science, INFORMS, vol. 38(12), pages 1803-1818, December.
    17. Homberger, Jörg & Fink, Andreas, 2017. "Generic negotiation mechanisms with side payments – Design, analysis and application for decentralized resource-constrained multi-project scheduling problems," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1001-1012.
    18. Jianjiang Wang & Xuejun Hu & Erik Demeulemeester & Yan Zhao, 2021. "A bi-objective robust resource allocation model for the RCPSP considering resource transfer costs," International Journal of Production Research, Taylor & Francis Journals, vol. 59(2), pages 367-387, January.
    19. Demeulemeester, Erik & Herroelen, Willy, 2011. "Robust Project Scheduling," Foundations and Trends(R) in Technology, Information and Operations Management, now publishers, vol. 3(3–4), pages 201-376, January.
    20. Bruni, M.E. & Di Puglia Pugliese, L. & Beraldi, P. & Guerriero, F., 2017. "An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations," Omega, Elsevier, vol. 71(C), pages 66-84.
    21. Rong Chen & Changyong Liang & Dongxiao Gu & Joseph Y-T. Leung, 2017. "A multi-objective model for multi-project scheduling and multi-skilled staff assignment for IT product development considering competency evolution," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6207-6234, November.
    22. Sönke Hartmann, 1998. "A competitive genetic algorithm for resource‐constrained project scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(7), pages 733-750, October.
    23. Hans, E.W. & Herroelen, W. & Leus, R. & Wullink, G., 2007. "A hierarchical approach to multi-project planning under uncertainty," Omega, Elsevier, vol. 35(5), pages 563-577, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    2. Xuejun Hu & Jianjiang Wang & Kaijun Leng, 2019. "The Interaction Between Critical Chain Sequencing, Buffer Sizing, and Reactive Actions in a CC/BM Framework," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(03), pages 1-22, June.
    3. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    4. Wuliang Peng & Jiali lin & Jingwen Zhang & Liangwei Chen, 2022. "A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III," Annals of Operations Research, Springer, vol. 308(1), pages 389-414, January.
    5. Bredael, Dries & Vanhoucke, Mario, 2023. "Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates," European Journal of Operational Research, Elsevier, vol. 308(1), pages 54-75.
    6. Rahman Torba & Stéphane Dauzère-Pérès & Claude Yugma & Cédric Gallais & Juliette Pouzet, 2024. "Solving a real-life multi-skill resource-constrained multi-project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 69-114, July.
    7. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
    8. Farnaz Torabi Yeganeh & Seyed Hessameddin Zegordi, 2020. "A multi-objective optimization approach to project scheduling with resiliency criteria under uncertain activity duration," Annals of Operations Research, Springer, vol. 285(1), pages 161-196, February.
    9. Zuo, Fei & Zio, Enrico & Xu, Yue, 2023. "Bi-objective optimization of the scheduling of risk-related resources for risk response," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    11. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    12. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
    13. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
    14. Yukang He & Tao Jia & Weibo Zheng, 2024. "Simulated annealing for centralised resource-constrained multiproject scheduling to minimise the maximal cash flow gap under different payment patterns," Annals of Operations Research, Springer, vol. 338(1), pages 115-149, July.
    15. Nesbitt, Peter & Blake, Lewis R. & Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo K. & Newman, Alexandra & Brickey, Andrea, 2021. "Underground mine scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 294(1), pages 340-352.
    16. Pejman Peykani & Jafar Gheidar-Kheljani & Sheida Shahabadi & Seyyed Hassan Ghodsypour & Mojtaba Nouri, 2023. "A two-phase resource-constrained project scheduling approach for design and development of complex product systems," Operational Research, Springer, vol. 23(1), pages 1-25, March.
    17. Rob Eynde & Mario Vanhoucke, 2020. "Resource-constrained multi-project scheduling: benchmark datasets and decoupled scheduling," Journal of Scheduling, Springer, vol. 23(3), pages 301-325, June.
    18. Chunlai Yu & Xiaoming Wang & Qingxin Chen, 2025. "Efficient Rollout Algorithms for Resource-Constrained Project Scheduling with a Flexible Project Structure and Uncertain Activity Durations," Mathematics, MDPI, vol. 13(9), pages 1-25, April.
    19. Esmaeil MEHDIZADEH & Hamidreza AKBARI, 2017. "A Novel Vibration Damping Optimization Algorithm for Resource Constrained Multi- Project Scheduling Problem," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(2), pages 291-309.
    20. Feifei Li & Zhe Xu, 2018. "A multi-agent system for distributed multi-project scheduling with two-stage decomposition," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:337:y:2024:i:1:d:10.1007_s10479-024-05854-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.