IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v335y2024i2d10.1007_s10479-023-05520-1.html
   My bibliography  Save this article

Disentangling human trafficking types and the identification of pathways to forced labor and sex: an explainable analytics approach

Author

Listed:
  • Enes Eryarsoy

    (Sabanci University)

  • Kazim Topuz

    (The University of Tulsa)

  • Cenk Demiroglu

    (Ozyegin University)

Abstract

Terms such as human trafficking and modern-day slavery are ephemeral but reflect manifestations of oppression, servitude, and captivity that perpetually have threatened the basic right of all humans. Operations research and analytical tools offering practical wisdom have paid scant attention to this overarching problem. Motivated by this lacuna, this study considers two of the most prevalent categories of human trafficking: forced labor and forced sex. Using one of the largest available datasets due to Counter-Trafficking Data Collective (CTDC), we examine patterns related to forced sex and forced labor. Our study uses a two-phase approach focusing on explainability: Phase 1 involves logistic regression (LR) segueing to association rules analysis and Phase 2 employs Bayesian Belief Networks (BBNs) to uncover intricate pathways leading to human trafficking. This combined approach provides a comprehensive understanding of the factors contributing to human trafficking, effectively addressing the limitations of conventional methods. We confirm and challenge some of the key findings in the extant literature and call for better prevention strategies. Our study goes beyond the pretext of analytics usage by prescribing how to incorporate our results in combating human trafficking.

Suggested Citation

  • Enes Eryarsoy & Kazim Topuz & Cenk Demiroglu, 2024. "Disentangling human trafficking types and the identification of pathways to forced labor and sex: an explainable analytics approach," Annals of Operations Research, Springer, vol. 335(2), pages 761-795, April.
  • Handle: RePEc:spr:annopr:v:335:y:2024:i:2:d:10.1007_s10479-023-05520-1
    DOI: 10.1007/s10479-023-05520-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05520-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05520-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadkarni, Sucheta & Shenoy, Prakash P., 2001. "A Bayesian network approach to making inferences in causal maps," European Journal of Operational Research, Elsevier, vol. 128(3), pages 479-498, February.
    2. Ligia Kiss & David Fotheringhame & Joelle Mak & Alys McAlpine & Cathy Zimmerman, 2021. "The use of Bayesian networks for realist evaluation of complex interventions: evidence for prevention of human trafficking," Journal of Computational Social Science, Springer, vol. 4(1), pages 25-48, May.
    3. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    4. Brian Greenhill & Michael D. Ward & Audrey Sacks, 2011. "The Separation Plot: A New Visual Method for Evaluating the Fit of Binary Models," American Journal of Political Science, John Wiley & Sons, vol. 55(4), pages 991-1002, October.
    5. Konrad, Renata A., 2019. "Designing awareness campaigns to counter human trafficking: An analytic approach," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 86-93.
    6. Konrad, Renata A. & Trapp, Andrew C. & Palmbach, Timothy M. & Blom, Jeffrey S., 2017. "Overcoming human trafficking via operations research and analytics: Opportunities for methods, models, and applications," European Journal of Operational Research, Elsevier, vol. 259(2), pages 733-745.
    7. Burcu B. Keskin & Gregory J. Bott & Nickolas K. Freeman, 2021. "Cracking Sex Trafficking: Data Analysis, Pattern Recognition, and Path Prediction," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 1110-1135, April.
    8. Kazim Topuz & Hasmet Uner & Asil Oztekin & Mehmet Bayram Yildirim, 2018. "Predicting pediatric clinic no-shows: a decision analytic framework using elastic net and Bayesian belief network," Annals of Operations Research, Springer, vol. 263(1), pages 479-499, April.
    9. Maass, Kayse Lee & Trapp, Andrew C. & Konrad, Renata, 2020. "Optimizing placement of residential shelters for human trafficking survivors," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    10. Delen, Dursun & Topuz, Kazim & Eryarsoy, Enes, 2020. "Development of a Bayesian Belief Network-based DSS for predicting and understanding freshmen student attrition," European Journal of Operational Research, Elsevier, vol. 281(3), pages 575-587.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keskin, Burcu B. & Griffin, Emily C. & Prell, Jonathan O. & Dilkina, Bistra & Ferber, Aaron & MacDonald, John & Hilend, Rowan & Griffis, Stanley & Gore, Meredith L., 2023. "Quantitative Investigation of Wildlife Trafficking Supply Chains: A Review," Omega, Elsevier, vol. 115(C).
    2. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    3. Konrad, Renata A. & Maass, Kayse Lee & Dimas, Geri L. & Trapp, Andrew C., 2023. "Perspectives on how to conduct responsible anti-human trafficking research in operations and analytics," European Journal of Operational Research, Elsevier, vol. 309(1), pages 319-329.
    4. Xiaodan Xie & Felipe Aros‐Vera, 2022. "An interdependent network interdiction model for disrupting sex trafficking networks," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2695-2713, June.
    5. Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
    6. Wang, Qiang & Zhang, Wen & Li, Jian & Ma, Zhenzhong, 2023. "Complements or confounders? A study of effects of target and non-target features on online fraudulent reviewer detection," Journal of Business Research, Elsevier, vol. 167(C).
    7. Burcu B. Keskin & Gregory J. Bott & Nickolas K. Freeman, 2021. "Cracking Sex Trafficking: Data Analysis, Pattern Recognition, and Path Prediction," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 1110-1135, April.
    8. Daniel Zapata-Medina & Albeiro Espinosa-Bedoya & Jovani Alberto Jiménez-Builes, 2024. "Improving the Automatic Detection of Dropout Risk in Middle and High School Students: A Comparative Study of Feature Selection Techniques," Mathematics, MDPI, vol. 12(12), pages 1-20, June.
    9. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Dursun Delen & Behrooz Davazdahemami & Elham Rasouli Dezfouli, 2024. "Predicting and Mitigating Freshmen Student Attrition: A Local-Explainable Machine Learning Framework," Information Systems Frontiers, Springer, vol. 26(2), pages 641-662, April.
    11. Mi Young Suk & Bomgyeol Kim & Sang Gyu Lee & Chang Hoon You & Tae Hyun Kim, 2021. "Evaluation of Patient No-Shows in a Tertiary Hospital: Focusing on Modes of Appointment-Making and Type of Appointment," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    12. Zhan, Yuanzhu & Tan, Kim Hua, 2020. "An analytic infrastructure for harvesting big data to enhance supply chain performance," European Journal of Operational Research, Elsevier, vol. 281(3), pages 559-574.
    13. Simsek, Serhat & Dag, Ali & Tiahrt, Thomas & Oztekin, Asil, 2021. "A Bayesian Belief Network-based probabilistic mechanism to determine patient no-show risk categories," Omega, Elsevier, vol. 100(C).
    14. Verhagen, Mark D., 2021. "A Pragmatist's Guide to Using Prediction in the Social Sciences," SocArXiv tjkcy_v1, Center for Open Science.
    15. Govinda Clayton & Kristian Skrede Gleditsch, 2014. "Will we see helping hands? Predicting civil war mediation and likely success," Conflict Management and Peace Science, Peace Science Society (International), vol. 31(3), pages 265-284, July.
    16. Ni, Ji & Chen, Bowei & Allinson, Nigel M. & Ye, Xujiong, 2020. "A hybrid model for predicting human physical activity status from lifelogging data," European Journal of Operational Research, Elsevier, vol. 281(3), pages 532-542.
    17. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.
    18. Angelo Secchi & Federico Tamagni & Chiara Tomasi, 2016. "Export price adjustments under financial constraints," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 1057-1085, August.
    19. Kabir, Golam & Tesfamariam, Solomon & Francisque, Alex & Sadiq, Rehan, 2015. "Evaluating risk of water mains failure using a Bayesian belief network model," European Journal of Operational Research, Elsevier, vol. 240(1), pages 220-234.
    20. Xavier Brusset & Aida Jebali & Davide Torre & Danilo Liuzzi, 2025. "Production optimization in the time of pandemic: an SIS-based optimal control model with protection effort and cost minimization," Annals of Operations Research, Springer, vol. 344(1), pages 79-102, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:335:y:2024:i:2:d:10.1007_s10479-023-05520-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.