IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v334y2024i1d10.1007_s10479-023-05181-0.html
   My bibliography  Save this article

Dirty versus renewable energy consumption in China: a comparative analysis between conventional and non-conventional approaches

Author

Listed:
  • Taha Zaghdoudi

    (University of Ha’il
    University of Carthage)

  • Kais Tissaoui

    (University of Ha’il
    University of Tunis El Manar)

  • Abdelaziz Hakimi

    (University of Jendouba and V.P.N.C Lab FSJEG)

  • Lamia Ben Amor

    (University of Ha’il)

Abstract

This study uses two empirical approaches to explore the asymmetric effects of oil and coal prices on renewable energy consumption (REC) in China from 1970 to 2019. As a conventional approach, we used the nonlinear autoregressive distributed lags (NARDL) model, while machine learning was used as a non-conventional approach. The empirical findings of the NARDL indicate that oil and coal price fluctuations have a significant effect on REC for both the short and long term. The results of the non-conventional approaches based on machine learning indicated that the SVM model was more efficient than the KNN model in terms of accuracy, performance, and convergence. Referring to the SVM model findings, the results show that an increase in the coal price has a higher ability to predict REC than the oil price. As a robustness check, we also find that an increase in Brent prices significantly decreases REC. The findings of this study support the view that there is a substitution effect from oil to coal before initiating the use of renewable energy in China.

Suggested Citation

  • Taha Zaghdoudi & Kais Tissaoui & Abdelaziz Hakimi & Lamia Ben Amor, 2024. "Dirty versus renewable energy consumption in China: a comparative analysis between conventional and non-conventional approaches," Annals of Operations Research, Springer, vol. 334(1), pages 601-622, March.
  • Handle: RePEc:spr:annopr:v:334:y:2024:i:1:d:10.1007_s10479-023-05181-0
    DOI: 10.1007/s10479-023-05181-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05181-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05181-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    2. Stamatios Ntanos & Michalis Skordoulis & Grigorios Kyriakopoulos & Garyfallos Arabatzis & Miltiadis Chalikias & Spyros Galatsidas & Athanasios Batzios & Apostolia Katsarou, 2018. "Renewable Energy and Economic Growth: Evidence from European Countries," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
    3. Hakimi Abdelaziz & Hamdi Helmi, 2019. "Financial development and human development: A non-linear analysis for Oil-exporting and Oil-importing countries in MENA region," Economics Bulletin, AccessEcon, vol. 39(4), pages 2484-2498.
    4. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable energy, oil prices, and economic activity: A Granger-causality in quantiles analysis," Energy Economics, Elsevier, vol. 70(C), pages 440-452.
    5. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    6. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2020. "Renewable energy consumption and economic growth nexus: Evidence from a threshold model," Energy Policy, Elsevier, vol. 139(C).
    7. Yurong Zhao & Yingying Zhang & Weixian Wei, 2021. "Quantifying international oil price shocks on renewable energy development in China," Applied Economics, Taylor & Francis Journals, vol. 53(3), pages 329-344, January.
    8. Rıdvan Karacan & Shahriyar Mukhtarov & İsmail Barış & Aykut İşleyen & Mehmet Emin Yardımcı, 2021. "The Impact of Oil Price on Transition toward Renewable Energy Consumption? Evidence from Russia," Energies, MDPI, vol. 14(10), pages 1-14, May.
    9. Apergis, Nicholas & Payne, James E., 2014. "Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a nonlinear panel smooth transition vector error correction model," Energy Economics, Elsevier, vol. 42(C), pages 226-232.
    10. Sami Ben Jabeur & Rabeh Khalfaoui & Wissal Ben Arfi, 2021. "The effect of green energy, global environmental indexes, and stock markets in predicting oil price crashes: Evidence from explainable machine learning," Post-Print hal-03797577, HAL.
    11. Wang, Qiang & Dong, Zequn & Li, Rongrong & Wang, Lili, 2022. "Renewable energy and economic growth: New insight from country risks," Energy, Elsevier, vol. 238(PC).
    12. Sadorsky, Perry, 2009. "Renewable energy consumption, CO2 emissions and oil prices in the G7 countries," Energy Economics, Elsevier, vol. 31(3), pages 456-462, May.
    13. Kais Tissaoui & Taha Zaghdoudi & Abdelaziz Hakimi & Ousama Ben-Salha & Lamia Ben Amor, 2022. "Does Uncertainty Forecast Crude Oil Volatility before and during the COVID-19 Outbreak? Fresh Evidence Using Machine Learning Models," Energies, MDPI, vol. 15(15), pages 1-20, August.
    14. Hachmi Ben Ameur & Zied Ftiti & Waël Louhichi, 2022. "Revisiting the relationship between spot and futures markets: evidence from commodity markets and NARDL framework," Annals of Operations Research, Springer, vol. 313(1), pages 171-189, June.
    15. Guo, Yaoqi & Yu, Chenxi & Zhang, Hongwei & Cheng, Hui, 2021. "Asymmetric between oil prices and renewable energy consumption in the G7 countries," Energy, Elsevier, vol. 226(C).
    16. Philipp Dees & Georgeta Vidican Auktor, 2018. "Renewable energy and economic growth in the MENA region: empirical evidence and policy implications," Middle East Development Journal, Taylor & Francis Journals, vol. 10(2), pages 225-247, July.
    17. Marius-Corneliu Marinaș & Marin Dinu & Aura-Gabriela Socol & Cristian Socol, 2018. "Renewable energy consumption and economic growth. Causality relationship in Central and Eastern European countries," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-29, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ousama Ben-Salha & Abdelaziz Hakimi & Taha Zaghdoudi & Hassan Soltani & Mariem Nsaibi, 2022. "Assessing the Impact of Fossil Fuel Prices on Renewable Energy in China Using the Novel Dynamic ARDL Simulations Approach," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    2. Chang, Chiu-Lan & Fang, Ming, 2022. "Renewable energy-led growth hypothesis: New insights from BRICS and N-11 economies," Renewable Energy, Elsevier, vol. 188(C), pages 788-800.
    3. Syed, Qasim Raza & Apergis, Nicholas & Goh, Soo Khoon, 2023. "The dynamic relationship between climate policy uncertainty and renewable energy in the US: Applying the novel Fourier augmented autoregressive distributed lags approach," Energy, Elsevier, vol. 275(C).
    4. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    5. Filimonova Irina Viktorovna & Nemov Vasily Yurievich & Provornaya Irina Viktorovna & Ozhogova Lyubov Mikhailovna, 2021. "Impact of Renewable Energy Sources Consumption on Economic Growth in Europe and Asia-Pacific Region," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 270-278.
    6. Mukhtarov, Shahriyar, 2024. "Oil prices and the renewable energy transition: Empirical evidence from China," Utilities Policy, Elsevier, vol. 91(C).
    7. Arshian Sharif & Usman Mehmood & Sunil Tiwari, 2024. "A step towards sustainable development: role of green energy and environmental innovation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 9603-9624, April.
    8. Guo, Yaoqi & Yu, Chenxi & Zhang, Hongwei & Cheng, Hui, 2021. "Asymmetric between oil prices and renewable energy consumption in the G7 countries," Energy, Elsevier, vol. 226(C).
    9. Mukhtarov, Shahriyar & Mikayilov, Jeyhun I. & Maharramov, Shahin & Aliyev, Javid & Suleymanov, Elchin, 2022. "Higher oil prices, are they good or bad for renewable energy consumption: The case of Iran?," Renewable Energy, Elsevier, vol. 186(C), pages 411-419.
    10. Ishaya Tambari & Pierre Failler, 2020. "Determining If Oil Prices Significantly Affect Renewable Energy Investment in African Countries with Energy Security Concerns," Energies, MDPI, vol. 13(24), pages 1-21, December.
    11. Kamil Makieła & Błażej Mazur & Jakub Głowacki, 2022. "The Impact of Renewable Energy Supply on Economic Growth and Productivity," Energies, MDPI, vol. 15(13), pages 1-13, June.
    12. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    13. Hlalefang Khobai & Nwabisa Kolisi & Clement Moyo & Izunna Anyikwa & Siyasanga Dingela, 2020. "Renewable Energy Consumption and Unemployment in South Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 170-178.
    14. Mukhtarov, Shahriyar & Mikayilov, Jeyhun I., 2023. "Could financial development eliminate energy poverty through renewable energy in Poland?," Energy Policy, Elsevier, vol. 182(C).
    15. Rıdvan Karacan & Shahriyar Mukhtarov & İsmail Barış & Aykut İşleyen & Mehmet Emin Yardımcı, 2021. "The Impact of Oil Price on Transition toward Renewable Energy Consumption? Evidence from Russia," Energies, MDPI, vol. 14(10), pages 1-14, May.
    16. Destek, Mehmet Akif & Aslan, Alper, 2020. "Disaggregated renewable energy consumption and environmental pollution nexus in G-7 countries," Renewable Energy, Elsevier, vol. 151(C), pages 1298-1306.
    17. Smyth, Russell & Narayan, Paresh Kumar, 2015. "Applied econometrics and implications for energy economics research," Energy Economics, Elsevier, vol. 50(C), pages 351-358.
    18. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    19. Ndzembanteh Aboubakary Nulambeh & Kadir Yasin Eryiğit, 2022. "Exploring the energy-environment growth nexus in francophone Africa in presence of institutions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10069-10087, August.
    20. Shahriyar Mukhtarov, 2024. "Do renewable energy and total factor productivity eliminate CO2 emissions in Turkey?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 26(2), pages 307-324, April.

    More about this item

    Keywords

    Oil price; Coal price; Renewable energy consumption; Economic growth; Nonlinear ARDL approach; Conventional and non-conventional approaches;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:334:y:2024:i:1:d:10.1007_s10479-023-05181-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.